LHC sensitivity to top properties beyond the SM

Nuno Castro

nfcastro@lipc.fis.uc.pt

International Workshop on Top Quark Physics Coimbra, 14th January 2006

Outline

Physics motivation

- The ATLAS and CMS experiments
- Physics beyond the SM with top quark
 - new physics in the main decay: $t \rightarrow bW$
 - top quark FCNC decays: $t \rightarrow qZ$, $t \rightarrow q\gamma$, $t \rightarrow qg$
 - $t\bar{t}$ resonances
- Conclusions

Physics motivation

- The LHC will be a top factory
 - $\sigma(pp \rightarrow t\bar{t}) \sim 800 \text{ pb}$
 - ${\rm single \ top \ production}) \sim 300 \ {\rm pb}$
- $t \rightarrow bW$ is the dominant decay mode
 - $BR(t \rightarrow sW) < 0.18\%$
 - $BR(t \rightarrow dW) < 0.02\%$

- $\Gamma_t^{SM} = 1.42 \text{ GeV}$ (including m_b , m_W , α_s , EW corrections)
 - $\tau_t < 10^{-23} \text{ s} \Rightarrow \text{top decays before hadronization}$
- Top can be a window to physics beyond the SM

The ATLAS and CMS experiments

New physics in t o bW decay

$$= -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}\left(V_{L}P_{L}+V_{R}P_{R}\right)t W_{\mu}^{-}$$
$$-\frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}\left(g_{L}P_{L}+g_{R}P_{R}\right)t W_{\mu}^{-}+\text{h.c.}$$

PRD45 (1992) 124: $|f_1^R| \equiv |V_R|$ $|f_2^L| \equiv |g_L|$ $|f_2^R| \equiv |g_R|$

Event selection:

 \checkmark \geq 4 jets with $p_T > 20~{
m GeV}/c$ and $|\eta| < 2.5$

 \mathcal{L}

- 2 b-tagged jet
- ho ≥ 1 lepton with $p_T > 25~{
 m GeV}/c$ and $|\eta| < 2.5$
- $\ \, { p}_T^{missing} > 20 \ {\rm GeV}/c$
- $|M(jj) M_W| < 100 \text{ GeV}/c^2$
- $|M(jjb) M_t| < 200 \text{ GeV}/c^2$

Signal efficiency: 8.7% SM background: ~ 40 k events (~ 30 k from $t\bar{t} \rightarrow bqqb\tau\nu_{\tau}$ and ~ 10 k from single top)

 $L=10 \text{ fb}^{-1}$

5

New physics in t o bW decay

• Angular asymmetries in $t \rightarrow bW$ decay

•
$$A_{FB} = 0.2234 \pm 0.0035$$
(stat) ± 0.0130 (sys) $[\sigma/A_{FB} = 6.0\%]$

• $A_{+} = -0.5472 \pm 0.0032$ (stat) ± 0.0099 (sys) $[\sigma/A_{+} = 1.9\%]$

• $A_{-} = 0.8387 \pm 0.0018$ (stat) ± 0.0028 (sys) $[\sigma/A_{-} = 0.4\%]$

New physics in t o bW decay

- \bullet W polarization:
- $A_{FB} = a_0(F_L F_R)$ = 0.2226 (LO)
 - $\begin{array}{ll} A_{+} &= a_{1}F_{L} a_{2}F_{0} \\ &= -0.5482 \text{ (LO)} \end{array}$
 - $A_{-} = -a_1 F_R + a_2 F_0$ = 0.8397 (LO)

 $(F_L, F_R, F_0$ defined as in SN-ATLAS-2005-052)

L=10 fb

New physics in $t \rightarrow bW$ decay

• Differences up to 17% in g_L and up to 9% in V_R

New physics in t ightarrow bW decay

L=10 fb⁻¹

limits on the anomalous couplings:

m_b taken into account

1σ limits	2σ limits
$V_R \in [-0.10, 0.15]$	$V_R \in [-0.14, 0.19]$
$g_L \in [-0.08, 0.05]$	$g_L \in [-0.10, 0.07]$
$g_R \in [-0.02, 0.02]$	$g_R \in [-0.04, 0.04]$

Compatible with results from W polarization analysis (semileptonic and dileptonic channels): SN-ATLAS-2005-052 (2σ limits considering $m_b = 0$ GeV/ c^2)

- GIM suppressed in the SM
- higher BR in some SM extensions
 (2-Higgs doublet, SUSY, exotic fermions, ...)

	BR in SM	2HDM	MSSM	<i>I</i> ¢ SUSY	QS
$t \rightarrow qZ$	$\sim 10^{-14}$	$\sim 10^{-7}$	$\sim 10^{-6}$	$\sim 10^{-5}$	$\sim 10^{-4}$
$t ightarrow q \gamma$	$\sim 10^{-14}$	$\sim 10^{-6}$	$\sim 10^{-6}$	$\sim 10^{-6}$	$\sim 10^{-9}$
$t \rightarrow qg$	$\sim 10^{-12}$	$\sim 10^{-4}$	$\sim 10^{-5}$	$\sim 10^{-4}$	$\sim 10^{-7}$

10

3 top decay channels studied:

Analysis strategy:

- 1 Sequential analysis [ATL-PHYS-2001-007]
- $Z \rightarrow ll, W \rightarrow l\nu$ (2jets+3l+missing)
- $Z \rightarrow ll, W \rightarrow qq$ (4jets+2l) \rightarrow not described (see ATL note)

Probabilistic analysis [ATL-PHYS-PUB-2005-009]

 \square $Z \rightarrow ll, W \rightarrow l\nu$ (2jets+3l+missing)

0.6 back. events (mainly $t\bar{t}$)

 $\varepsilon \times BR = 0.08\%$

Probabilistic Analysis:

- Preselection
 - General criteria:
 - ≥ 1 lepton ($p_T > 25 \text{ GeV}/c$ and $|\eta| < 2.5$)
 - ho ≥ 2 jets ($p_T > 20~{
 m GeV}/c$ and $|\eta| < 2.5$)
 - only 1 b-tagged jet
 - ${\scriptstyle {\rm \, o}} \quad p_T^{miss.}>20~{\rm GeV}/c$
 - Events classified into different channels (qZ, $q\gamma$ or qg)
 - Specific criteria for each channel
- Probabilistic type of analysis after the preselection

$$L_S = \prod_{i=1}^N P_i^{signal}$$
$$L_B = \prod_{i=1}^N P_i^{back.}$$

• discriminant variable: $L_R = \ln(L_S/L_B)$

L=10 fb⁻¹

17

BR 5 σ sensitivity

•
$$BR = \frac{5\sqrt{B}}{2 \times L \times \sigma(t\bar{t}_{SM}) \times \varepsilon_t \times \varepsilon_\ell}$$
 $[\sigma(t\bar{t}_{SM}) = 833 \text{ pb (NLO)}$ $\varepsilon_\ell = 0.9^{n_{leptons}}$

• Sequential analysis $[|M(\ell^+\ell^-j) - M_t| < 24 \text{ GeV}/c^2 \text{ cut}]$:

	$t ightarrow qZ \ (Z ightarrow ll, W ightarrow l u)$	t ightarrow qZ ($Z ightarrow ll, W ightarrow qq'$)
$L = 100 \; {\rm fb}^{-1}$	1.1×10^{-4}	5.0×10^{-4}

Discriminant analysis:

cut applied to the discriminant variable (best S/\sqrt{B})

	$t \rightarrow qZ$	$t ightarrow q \gamma$	t ightarrow qg
$L = 10 \; {\rm fb}^{-1}$	5.1×10^{-4}	1.2×10^{-4}	4.6×10^{-3}
$L = 100 \; {\rm fb}^{-1}$	1.6×10^{-4}	3.8×10^{-5}	1.4×10^{-3}

- expected 95% CL limits on BR (absence of signal)
 - Sequential analysis $[|M(\ell^+\ell^-j) M_t| < 24 \text{ GeV}/c^2 \text{ cut}]$:

	$t ightarrow qZ \ (Z ightarrow ll, W ightarrow l u)$	t ightarrow qZ ($Z ightarrow ll, W ightarrow qq'$)
$L=100~{\rm fb}^{-1}$	6.3×10^{-5}	2.8×10^{-4}

Discriminant analysis:

- Modified frequentist likelihood method [A.L. Read, CERN report 2000-005 (2000) 81]
- No cuts on the discriminant variable used

	$t \rightarrow qZ$	$t ightarrow q \gamma$	t ightarrow qg
$L = 10 \; {\rm fb}^{-1}$	3.4×10^{-4}	6.6×10^{-5}	1.4×10^{-3}
$L = 100 \; {\rm fb}^{-1}$	6.5×10^{-5}	1.8×10^{-5}	4.3×10^{-4}

• Dominant systematics: M_t and $\varepsilon_{btag} < 20\%$

• Estimated $BR(t \rightarrow qZ)$ sensitivity for a 3σ discovery: $S/\sqrt{S+B} = 3$

	$L = 100 \; {\rm fb}^{-1}$
expected $t\bar{t}$ SM events	[130,250]
expected signal efficiency	[5%,6%]
BR(t ightarrow qZ) sensitivity	$[14 imes 10^{-4}, 22 imes 10^{-4}]$

- CMS Physics TDR in April
 - results on the CMS sensitivity to $t \rightarrow qZ$ and $t \rightarrow q\gamma$ FCNC decays

⁽thanks to Lorenzo Bellagamba)

$t\overline{t}$ resonances

- $X \to t\bar{t}$ in several SM extensions (SUSY, Technicolor, ...)
 - MSSM predicts $BR(H^0, A \to t\bar{t}) \sim 1$ for $m_{H^0, A} > 2m_t$ and $\tan \beta \sim 1$
- $X \to t\bar{t} \to WbW\bar{b} \to \ell\nu bjjb$ topology was studied (X is a 'generic', narrow resonance)

Conclusions

- ATLAS sensitivity to new physics in the $t \rightarrow bW$ decay:
 - m_b should be taken into account
 - $g_R \in [-0.02, 0.02] \Rightarrow$ factor 2-3 better than the present limits
 - further improvements expected from the combination of the semileptonic and the fully leptonic channels
- LHC sensitivity to top quark FCNC decays (L = 100 fb⁻¹, 5σ significance):

 $BR(t \to qZ) \sim 10^{-4}$ $BR(t \to q\gamma) \sim 10^{-5}$

 $BR(t \to qg) \sim 10^{-3}$

- improvement combining ATLAS and CMS results
- sensitivities at the level of SUSY and Quark Singlets models predictions
- **ATLAS** sensitivity to $t\bar{t}$ resonances:
 - 5σ discovery ($m_X = 1$ TeV/ c^2 , L = 30 fb⁻¹): $\sigma \times BR \sim 10^3$ fb