

Single top production at the LHC

Andrea Giammanco

CP3 / UCL, Louvain-la-neuve, Belgium (on behalf of the CMS and ATLAS collaborations)

- Importance of the EW single top
- From Tevatron to LHC
- $|V_{tb}|$ extraction
- Ongoing analyses:
 - t-channel
 - s-channel
 - Wt

Single top event as seen with ATLAS (Courtesy C.Timmermans and A.Lucotte)

Single top

Three production modes in the Standard Model:

- Never observed so far
- Directly related to |V_{tb}|

(not a $V_{tb}/\Sigma V_{ti}$ ratio \Rightarrow no assumption on the number of quark generations)

- Sensitivity to new physics: FCNC (t-ch.), new gauge bosons or KK excitations (s-ch.), H[±]→tb ...
- Background to tt, WH \rightarrow Ivbb, some SUSY and BSM final states
- Possibility to study top properties (mass, polarization, charge) with very little reconstruction ambiguities
- Together they provide complementary informations on Wtb coupling, since they probe it for q²<0, q²>0, q²=0

T.Tait, C.-P.Yuan, Phys.Rev. D63 (2001) 0140018

(*) with kinematic cuts in order to better mimic signal

Belyaev, Boos, and Dudko [hep-ph/9806332]

(Z.Sullivan, Phys.Rev. D70 (2004) 114012	Process	PDF	μ-scale (μ/2-2μ)	∆m _{top} (4.3 GeV)	
	s-channel	4%	2%	3%	
	t-channel	4%	3%	1%	
	Wt	?	<5%	1%	
(it should be similar to t-channel and $gg \rightarrow tt$)			Smaller tha will be "luc region	Smaller than @ TeV, because we will be "luckier": better known x region for the gluon PDF	

Direct |V_{tb}| extraction: single top / single W

In principle, systematics coming from PDF (both in total x-section and in shape of the observables) would disappear by normalizing s-channel events over single W events:

(with care in choosing coherent cuts for the two processes, to avoid the reintroduction of the same errors in a subtler way)

The same for $gb \rightarrow Wt / gb \rightarrow Zb$? ($Z \rightarrow \mu\mu$)

Zb not so abundant as W (140 nb), but still a good deal: 1000 pb (Wt: 60 pb). Unfortunately nothing similar can be easily exploited for t-channel.

Status of the LHC analyses

• CMS:

- analyses are ongoing for the Physics TDR (deadline: april 2006)
- old papers: mostly fast simulation (CMSJET, in fortran), limited use of full simulation (CMSIM, based on Geant 3)
- Physics TDR: new full simulation (OSCAR, based on Geant 4) for as many samples as possible, and the new fast simulation (FAMOS) when the full simulated sample is not available

ATLAS:

- Physics TDR in 1999 with large use of fast simulation (ATLFAST), and full simulation for the studies most sensitive to detector effects
- physics papers continued to be published since then
- ATLFAST continued to be updated and improved
- limited use of full simulation (based on Geant 4) so far (mostly for checks of the reliability of the fast simulation)

All the results shown in this talk are preliminary.

t-channel

- Most characteristic feature: the "recoil" light quark.
- (But we cannot exploit $Q_l \times \eta_j \dots$)
- The additional b quark is often unobservable due to low P_T .

t-channel, ATLAS

(Courtesy by A.Lucotte)

- Exactly 2 high- P_T jets:
- 1 high P_T central b-jet
- 1 forward light jet $|\eta|\!>\!2.5$
- Reconstruct Top using the central b-jet and the ν solution giving minimum $|m_{l\nu b} m_t^{gen}|$
- Resolution better than 25 GeV on M_{top}
- Window in H_T or M_{top}
- Performance :
 - Efficiency $\varepsilon \approx 1.3\%$, N(30fb⁻¹) ~ 7,000 events
 - Main backgrounds : W+jets , ttbar
 - Main systematics (lumi excepted):
 b-tag efficiency & mistag rates, JES

In principle more difficult than t-channel:

- Smaller cross section (1/25)
- There is not the characteristic feature of the extra forward jet
- t-channel itself is a very similar background

When reconstructing the top, a further ambiguity (apart from the usual one on ν solution) arises from the presence of two b-jets in the final state.

Most popular W-b pairing criteria:

- jet giving minimum $|m_{lvb} m_t^{gen}|$ (requires a good control of jet and MET calibration; easier at ATLAS than at CMS)
- jet giving the highest P_T to the reconstructed top

s-channel, ATLAS

(Courtesy by A.Lucotte and F.Chevallier)

- Selection :
 - Splitted analysis for t+bbar and tbar+b final states
 - \rightarrow Asymmetric for single-top, symmetric for ttbar and W+jets
 - Exactly 2 central high- P_T jets, both identified as b-tagged jets
 - Reconstruct Top w/ highest- P_t lvb combination
 - Window in H_T or M_{top}

s-channel, ATLAS (2)

(Courtesy by A.Lucotte and F.Chevallier)

s-channel, CMS

 \boldsymbol{q}_{bjet}

Preselection

- -1 high-P_T lepton
- Exactly 2 high- P_T jets, both b-tagged
- Missing Energy
- Topological selection

 - Window in M_{top}
 - $-\Sigma_{\rm T}$ cut
 - Other topological variables are used, most notably M(tb) (directly related to \$)

$$\vec{\Sigma}_T = \vec{P}_{T,\mu} + \vec{E}_{T,miss} + \sum_{bjets} \vec{P}_T$$

M(tb)

Preliminary

• Background to $gb \rightarrow H^{\pm}t$

- Very difficult channel: signal is overwhelmed by ttbar background (ttbar with a b-jet outside acceptance is a perfect Wt fake)
- Also not trivial to define what the signal is (at NLO: entangled with ttbar diagrams!), see talk by Fabio Maltoni

Wt, ATLAS

(Courtesy by A.Lucotte)

- Selection :
 - At least 3 high-p_T jets :
 - w/ only 1 high P_T central b-tagged jet
 - − Reconstruct a W→ jj: 60 <m_{jj} < 90 GeV/c²
 - Reconstruct leptonic Top : $m_{lvb} m_t$
 - Window in H_T or M_{top}

Performance :

- efficiency $\varepsilon \approx 0.90\%$, N(30fb⁻¹) ~ 4,700 events
- Main background : ttbar, t-channel
- Main systematics (lumi excepted):
 b-tag efficiency & mistag, JES

S/B ~ 1/7 √(S+B)/S ~ 4% @ 30 fb⁻¹

- From Fabio's talk on thursday:
 - Study at parton level
 - Dilepton sample with ONLY one (b-tagged) jet. Smaller statistics but also better ttbar rejection: S/B~1/3
 - After 10 fb⁻¹: 4000 Wt, 13000 tt, (120k Zb) ■ $\Rightarrow \sqrt{(S+B)/S}=2\%$
- Moreover, much less dependence on jet energy scale (no resonance is reconstructed)
- A dileptonic analysis just started in CMS (too preliminary to be shown here, hopefully ready for the Physics TDR)

- Single top physics provides a new test ground for the Standard Model and a possible window on new physics
- Precision physics in this sector will be possible at LHC
- One of the three production modes, Wt, will be measurable at LHC for the first time
- Analyses under way in ATLAS and CMS

Acknowledgements: Joachim Mnich, Arnaud Lucotte, Fabio Maltoni

Backup slides

Problem: At NLO, Wt mixes with tt.

A MC-friendly definition of tW is needed in order to avoid double counting. Solution (Les Houches 2005): The full set of gg→btW diagrams is left out and Wt is DEFINED by a b-jet veto.

Already implemented in MCFM.

References:

Tait, Phys.Rev. D61 (2000) 034001

Boos and Belayev, Phys.Rev. D63 (2001) 034012

Campbell and Tramontano, Nucl.Phys. B726 (2005) 109-130

- Tait, Phys.Rev. D61, 034001 (2000):
 - Study at parton level
 - Dilepton sample with ONLY one (b-tagged) jet. Smaller statistics but also better ttbar rejection: S/B~1
 - After 30 fb⁻¹: 12000 Wt, 13500 tt, 150 WW+X
 - $\Rightarrow \sqrt{(S+B)/S=1.3\%}$ (too optimistic?)
 - A jet threshold at P_T=15 GeV is used: 1 b-jet above this threshold, no other jet above this threshold. But at LHC both jet finding and btagging are severely degraded at such low momenta!