High  $p_T b$ -tagging at CDF: Measuring Efficiency and Understanding Mistags

**Christopher Neu** 

**University of Pennsylvania** 

on behalf of the CDF Collaboration

Top2006 Workshop 13 January 2006 University of Coimbra, Portugal

**Outline:** •Challenge of *b*-tagging at a hadron machine

- •Lifetime-based *b*-tagging at CDF
- •Measuring efficiency in the data
- •Understanding contribution from non-b sources
- •Other CDF *b*-tagging techniques
- •Considerations for LHC experiments
- •Summary





## **b**-Tagging at the Tevatron

- The **ability to identify jets originating from** *b* **quark production** is critical for several facets of the Tevatron RunII physics program top, Higgs, exotic searches, QCD...
- **Distinguishing jets from** *b* **quarks** from light flavor and charm:
  - The long lifetime of the *b*
  - The large mass of *B* hadrons
  - The energetic semileptonic decay of *B* hadrons
- Given that we have some nice handles *b*-tagging sounds easy, right?
- Challenges at a hadron machine:
  - **Busy environment** in tracking detectors
  - Multiple interactions within each crossing
  - No  $Z \rightarrow bb$  peak with which to calibrate tagging algorithms
  - Calibration samples are available but **incomplete overlap** with interesting signal spectra
- Challenges distinguishing bottom jets from charm jets:
  - Charm has **nonzero lifetime**
  - Intermediate mass of charmed hadrons
  - Similar semileptonic decay spectrum to *B* sector



#### **The CDF Detector: Crucial Components for Tagging**

- **Charged particle tracking:** 
  - Solenoid provides a 1.4T magnetic field
    - Good momentum resolution
  - Silicon: several subsystems —
    - SVXII:
      - 5 layers out to radius of 10.6cm
      - |z| < 45 cm
    - L00:
      - Directly on beampipe
      - Valuable for improved tracking -4% increase in tag efficiency
    - ISL:
      - Two layers at r = 20,28 cm
      - Provides forward silicon tracking
  - **– COT:** 
    - Open drift chamber
    - Good  $p_T$ , spatial resolution
- **Calorimetry** jets, electrons
- Muon system muons
- Trigger
  - Highly efficient for high pT leptons
  - Also collects valuable inclusive lepton, jet samples





## **CDF** *b*-tagging Tools

- Ingredients for a useful tagger:
  - **Tag efficiency for** *b***-jets** in data, MC
  - Mistag rate in order to understand contribution to tagged sample from non-b sources
    per-jet mistag probability
  - Efficiency and mistag probability are not single-valued
    - need to be examined as a function of jet- and event-level quantities
- CDF has several tagging tools in use/development for RunII analyses:
  - Identification of jets with a secondary vertex SECVTX:
    - Exploits the long lifetime of the *b* quark
    - Additional handle one can use is the mass of the reconstructed secondary vertex
  - Jet Probability: incorporates lifetime, mass information
    - Assigns a per-jet probability that the jet was consistent with coming from a prompt source
  - **Soft lepton tagging:** looks for energetic electron or muon within a jet
  - NN tagging algorithms:
    - Simultaneous incorporation of lifetime, mass, semileptonic decay information along with event level quantities
    - Two versions under development
      - One that attempts to increase purity within SECVTX selected sample
      - Another that looks for tags in generic jet sample

Christopher Neu Penn/CDF



## Secondary vertex *b*-tagging at CDF

- **SECVTX algorithm:** attempt to **construct a secondary vertex** among **large impact parameter**  $(d_0)$  **tracks** using a two-pass scheme
  - Pass1:
    - Starts with construction of **2-track "seed" vertex**
    - Attach all remaining tracks that are consistent with seed.
    - Construct the multitrack vertex, iteratively **pruning** away the attached tracks if they spoil vertex fit.
    - Resulting candidate vertex required to have 3 or more tracks
  - **Pass2:** tighter track  $d_0$  significance requirement
    - Attempt to vertex all these tracks to a common point.
    - **Remove** any track that spoils the vertex fit, revertexing after each removal.
    - Resulting candidate vertex required to have 2 or more tracks
  - Apply vertex quality cuts
    - removal of  $K_s$ ,  $\Lambda$  vertices
    - Removal of vertices in the **material portion of CDF** (beampipe, silicon ladders)
  - If the vertex survives, the jet is "tagged" -
    - sign of transverse displacement of secondary vertex wrt interaction point,  $L_{xy}$ , determines positive tag or negative tag.





## **Contribution to b-Tag Sample from Light Flavor Jets**



## **Contribution to** *b***-Tag Sample from Light Flavor Jets**

- However what is needed is an **a priori prediction of the light flavor content** of the positively tagged jets in the signal data sample
- Procedure:
  - For *b*-tagging based top physics analyses, the focus is the *W*+jets data sample
  - Use inclusive jet sample for calibration of mistags
  - Determine per-jet mistag probability in a number of different variables
    - Jet  $E_T$ ,  $|\eta|$ ,  $\varphi$
    - Jet track multiplicity
    - $\Sigma E_T^{jets}$
  - Use calibration jet samples to determine parameterization then **apply to signal data sample**
- Sources of systematic error:
  - Extrapolation from calibration sample to signal sample
  - Uncertainty on  $\Sigma E_T^{jets}$
  - Trigger bias
- Result: can predict **mistag contribution to 8%**





## **Light Flavor Jet Tag Asymmetry**

- The mistag parameterization only accounts for limited detector resolution source of the mistag sample
- Material interactions within the jet ۲ decay bias the distribution to positive  $L_{xv}$  values – introducing a light flavor jet tag asymmetry
- Asymmetry can be measured
  - MC templates of pseudo- $c\tau$ for *b*, *c*, and light flavor jets
  - Fit to pseudo- $c\tau$  distribution from generic jet sample

#### $N_{light}^+ / N^- = 1.27 + 0.13$



## **Summary: Mistags**



- Mistag studies:
  - Data from inclusive jet samples
  - Two SECVTX operating points Tight and Loose
    - Different points in efficiency-versus-purity space
- Loose operating point is similar to proposed LHC taggers
  - Relaxed track requirements wrt Tight SECVTX larger mistags
  - For a central  $E_T = 40$  GeV jet, the SECVTX mistag rate is ~1%



### **Efficiency Measurement in the Data**

- Understanding the tag efficiency in the Monte Carlo is simple
- But what one really seeks is the efficiency for tagging b-jets in the data
- Strategy:
  - Measure the tag efficiency in data in a sample that is enriched in real b-jets
  - Measure the tag efficiency in MC in a sample that models this HF-enriched data sample
  - Calculate a *b*-tagging scale factor = Ratio of data tag efficiency / MC tag efficiency
    - Scale factor is a measure of how the MC differs from reality
- Two techniques currently employed at CDF:
  - Both use samples of dijets
  - Enrich the HF content:
    - One jet demanded to have a lepton so-called "lepton-jet" indicative of semileptonic B decay
    - Other jet recoil or "away-jet" demanded to be tagged
  - One method relies on "muon-jets" and fits the b- and non-b content using templates of the relative  $p_T$  of the muon wrt jet axis =  $p_T^{rel}$
  - One method considers double tags in events where the away jet is paired with an "electron-jet" that is also tagged



## **b-Tag Efficiency:** Muon $p_T^{rel}$ Method



- $p_T^{rel}$  templates drawn from MC
  - Charm template very similar to that of light-flavor jets
  - *b* template similar for tagged and untagged *b*-jets
- Used to fit for *b* and non-*b* content in untagged and tagged data sample Statistical errors only

| 1                   | Statistical CITOIS Only |
|---------------------|-------------------------|
| Pretag b-fraction   | 0.779 +- 0.009 +- 0.015 |
| Tagged b-fraction   | 0.990 +- 0.016 +- 0.002 |
| Data tag efficiency | 0.392 +- 0.007 +- 0.008 |
| MC tag efficiency   | 0.4278 +- 0.0019        |

- Systematic errors: main source is extrapolation to higher jet  $E_T$
- Result: SF = 0.915 +- 0.017(stat) +- 0.060(sys)









# **b-Tag Efficiency: Electron Method and Comparison**

- HF-enriched electron-jet sample contains both semileptonic B decays and conversions
  - Use single tag rate in electron jet to algebraically solve for HF content of untagged sample
  - Conversions provide a complementary sample with similar topology with which one <sup>o</sup> can understand the real HF content of the away-jet tagged sample
- Main sources of systematic error: extrapolation to higher jet  $E_T$ , **b**, **c** fraction in electron jets
- Result: SF = 0.890 +- 0.028(stat) +- 0.072(sys)
- Combination of electron and muon methods:
  SF<sub>combined</sub> = 0.909 +- 0.060(stat+sys)



# **Summary: Efficiency**



- ttbar Pythia MC studies
- *b*-tagging SF has been applied
- Loose SECVTX operating point used in several top complete/ongoing top analyses
  - For a central  $E_T = 60$  GeV b-jet in top decay, the Loose SECVTX tag efficiency is ~52%
  - Efficiency decrease at large  $|\eta|$  is due mostly to tracking efficiency in the forward region which are currently seeking to improve
- Charm efficiency:
  - Measured in MC, similar SF
  - Efficiency ranges from 5-10% as a function of jet  $E_T$

## **b-Tagging at D0**

- D0 in RunII also has secondary vertex b-tagging in RunII
- Benchmarks:
  - Efficiency for a 60 GeV b-jet is ~45%
  - Mistag rate for 40 GeV jet is ~0.3%
- This is best compared to the CDF **SECVTX Tight operating point**:
  - CDF Tight SECVTX efficiency for a 60 GeV b-jet is ~45%
  - CDF Tight SECVTX mistag rate for 40 GeV jet is ~0.4% for central jets –



CDF and D0 tagging algorithms have similar efficiency and mistag rates.



## Looking Ahead to *b*-Tagging at LHC Experiments

- Good amount of experience has been gained at the Tevatron experiments
- Fairly successful *b*-tagging tools have been developed
- This is not to mean however that all the problems are easy to solve
- There are **many issues that deserve attention** for the future experiments:
  - Alignment of the silicon tracking detector
  - Understanding of the **charge deposition models** for particles as they traverse the silicon detector
  - Understanding the **material content around the interaction point**
  - **Tracking simulation** and its relation to reality
  - **Trigger effects** ensure that enough calibration data is collected at appropriate *ET*,  $\eta$  range for the physics one wants to do



## **Summary**

- Several critical portions of the Tevatron RunII physics program rely on the ability to identify jets originating from b quark production
- CDF has several b-tagging tools in use, including the secondary vertex tagger discussed here in particular
- With any *b*-tagging tool it is important to understand and quantify
  - Efficiency for tagging b-jets in the data
  - The rate at which non-b jets are tagged
- CDF has made progress in understanding these issues
- Tagger development for the LHC experiments can build upon the knowledge we have developed at the Tevatron



### Backup



### **Backup – Muon Method Jet ET Dependence**



