

How to Calibrate Jet Energy Scale?

Kenichi Hatakeyama Rockefeller University for the CDF and D0 Collaborations

Top 2006 Workshop January 12 - 15, 2006 University of Coimbra, Portugal

Jets in Top Quark Measurements

Jets at the Hadron Colliders

Why is the jet energy scale determination difficult?

Instrumental effects

- non-linear response to hadrons
- different response to electrons and hadrons
- un-instrumented regions
- large fluctuations in deposited energy especially for hadrons

Physics effects

- fragmentation and hadronization
- spectator interaction energy
- initial and final state gluon radiation
- flavor of parent parton

CDF and D0 Calorimeters

Overview: Jet Energy Scale Determination

Jets used in CDF & D0 top quark measurements

	CDF	D0
Jet algorithm	Cone, $R_{cone}=0.4$	Cone, R_{cone} =0.5
Main calibration	In-situ single track &	Photon+jet P _T balance
source(s) for	test beam data +	
absolute scale:	jet fragmentation model	

D0 Jet Energy Scale

Calorimeter jet \rightarrow Particle jet (without underlying event)

$$E_{jet}^{particle} = \frac{E_{jet}^{measured} - E_o}{R_{jet} \cdot S}$$

- $E_o: \text{Offset} \text{for Uranium noise, energy from previous bunch crossing, additional$ *p-pbar*interactions, and underlying event. Determined from the min.-bias & zero-bias data.
- **R**_{jet}: Jet response Calorimeter response to jets. Equalize jet response along η using P_T balance in dijet events. Absolute scale determined from P_T balance in photon+jet events. EM scale determined using $Z \rightarrow ee$ mass.
- S: Showering correction for energy emitted outside jet cone due to detector effects (does not correct for "physics" showering). Determined from energy density outside the jet cone in data and MC.
- Corrections mostly determined based on data using conservation of transverse momentum.
- Separate corrections for data and MC.

January 12 - 15, 2006 TOP 2006, Coimbra, Portugal

CDF Jet Energy Scale

 \Box f_{rel} : Relative correction - make jet response uniform in η . Determined from dijet P_T balance.

MI: Multiple interaction correction - for energy of other *p*-*pbar* interactions. From data.

 f_{qbs} : Absolute correction - for calorimeter response to jets. From simulated dijet events. The single particle response in the simulation tuned to the in-situ single track & test beam data.

particle jet (including UE)

UE: Underlying event correction - for beam remnants, multiple parton scattering... From data.

OOC: Out-of-cone correction - for energy outside jet cone due to physics showering. Determined based on the MC parton shower & hadronization model.

parent parton

Systematic uncertainties:

- Differences between MC and data.
- Uncertainties from the method used to obtain the corrections.

Jet Energy Corrections

January 12 - 15, 2006

D0: Response Function, *R*_{jet}

 R_{jet} obtained from data and MC separately using missing E_T projection fraction (MPF).

D0: Response Function, *R*_{jet}

January 12 - 15, 2006

D0: Showering Correction

Shower particles can leak outside the jet clustering cone.

- Measure the energy flow vs distance from the jet axis, *R*.
- Subtract "offset" energy due to noise, UE etc.
- Subtract the physics showering contribution estimated from MC.

D0: Closure Test – Hemisphere Method

January 12 - 15, 2006

D0: Total JES Uncertainties

The results are not final yet.

The final JES results expected to come out in spring.

CDF: Single Particle Response

CDF: Absolute (Response) Correction

CDF: Corrections for Non-Central Jets

January 12 - 15, 2006

CDF: Underlying Event (UE) Tuning in MC

January 12 - 15, 2006

CDF: Out-of-Cone Correction & Uncertainty

Correction:

- Add energy of particles leaking outside the jet cone due to physics showering.
- Some analyses use the analysis-specific correction.

Uncertainty:

 Differences in energy outside the jet cone up to *R*=1.3 in data and MC samples in photon+jet events.

Main uncertainty at low P_T^{jet}.

January 12 - 15, 2006

Photon-jet and Z-jet Balancing

CDF: Total JES Uncertainty

Constraining JES with Dijet Mass Resonances & *b*-jet Energy Scale

W Mass Resonance in tt Events

b-jet Energy Scale

- *b*-jets have different characteristics from generic jets
 - Harder fragmentation
 - *B* hadron decays

- CDF and D0 use MC to model *b*-jet response.
 In M_{top} measurements, use:
 - Generic jet energy corrections
 - Additional corrections (from MC) to correct
 b-jets back to the parent *b*-quark
- Additional uncertainties for *b*-jets (0.6%)
 based on constraints from other experiments

Work in progress:

□ Test *b*-jet energy scale directly in data, with photon–*b*-jet P_T balance & $Z \rightarrow bb$

CDF: Extraction of $Z \rightarrow bb$ Signal

- Great tool to test *b*-jet energy scale and for extraction of *bb* resonances $(H \rightarrow bb)$
- Use two *b*-tagged jet events, apply kinematic cuts to improve *S/B*
- Fit signal and background (direct QCD production) templates, and vary JES

Conclusions

- □ The jet energy scale is the dominant uncertainty in many measurements of the top quark.
- □ CDF and D0 use different approaches to determine the jet energy scale and uncertainty:
 - CDF: Scale mainly from single particle response + jet fragmentation model. Cross-checked with photon/Z-jet P_T balance etc.
 - D0: Scale mainly from photon-jet P_T balance. Cross-checked with the closure tests in photon/Z+jet events etc.
- \Box CDF achieved ~3% uncertainty in Run 2. Further improvements in progress.
- D0 new result in Run 2 (uncertainty ~ 2%) will come out soon.
- In-situ M_W calibration has been successfully used to improve JES by both CDF and D0 in M_{top} measurements.
- Expect result on the *b*-jet energy scale from photon–*b*-jet P_T balance & $Z \rightarrow bb$ soon.

Backups

CDF Jet Energy Correction Scheme

Corrections for detector effects

For central jets:

- Tune the detector simulation to the real calorimeters.
 - Response to individual particles of each type, momentum and direction
- □ Simulate "jets" using a jet fragmentation model.
 - Particle composition, momentum and multiplicity distributions in a jet
 - Run them through the detector simulation
- Cluster particles (particle jet) & calorimeter towers (calorimeter jet), use P_T correlation for correction.

For non-central jets

 $\Box \quad \text{Dijet } P_{T} \text{ balance}$

Corrections for physics effects

- □ Tune MC generator to data in the "transverse" region which is sensitive to UE.
- Correlate P_T of the particle jet and its parent parton in the tuned MC generator.

January 12 - 15, 2006

CDF: Particle Jet to Parton Corrections

- Correct particle jet to the parent parton. Correcting for two effects:
 - Underlying event energy
 - Energy that leaks outside the jet clustering cone (out-of-cone)
 - The corrections determined from
 PYTHIA tuneA dijet MC events.
 Many analyses determine
 corrections from their process
 samples; the corrections depend
 on process & parent parton type.

