Perspectives for the measurement of beauty production via semileptonic decays in ALICE

Rosario Turrisi
INFN Padova (Italy)
for the ALICE collaboration
Contents

- Motivation: energy loss
- ALICE detector highlights
- Performances: electron separation and vertexing
- $B \rightarrow e^+ X$: attainable statistics and errors
- $B \rightarrow e^+ X$: sensitivity of energy loss measurement
- $B \rightarrow \mu^+ X$: strategy and performance
- Conclusions
Physics motivation

Heavy quarks:
- abundant yield
- produced early
- travel ~4 fm in the medium

probe the collision dynamics!

ALICE: very low p_t explored, complementary to other LHC exps.

<table>
<thead>
<tr>
<th>$\sigma_{Q\bar{Q}}(NN)$ [mb]</th>
<th>PbPb (0-5% centr.)</th>
<th>pp 14 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>5.5 TeV</td>
<td>0.51</td>
</tr>
</tbody>
</table>

N_{Q\bar{Q}} per collision
4.56

0.0072

b production cross section
transverse momentum spectrum

In AA:
- quarkonia dissociation
- energy loss

(+pA) disentangle medium effects

In pp:
- (p)QCD test bench
- AA, pA baseline

1 year pp 14 TeV @ nominal lumin

HERA-LHC workshop
CERN-2005-14

Krakow, July 7, 2006
Rosario Turrisi
"Perspectives for semileptonic beauty measurement with ALICE"
High p_t suppression at RHIC

- Method: compare mesons’ p_t distribution in pp and AA:

$$R_{AA}^{D,B} (p_t) = \frac{1}{N_{\text{coll}}} \times \frac{dN_{AA}^{D,B} / dp_t}{dN_{pp}^{D,B} / dp_t}$$

= 1 if no medium effect

- Observed at RHIC for light flavors and charm
- Reproduced by $\hat{q} = 4$-14 GeV2/fm (see next slide)

Calculations: Armesto, Dainese, Salgado, Wiedemann, PRD71 (2005) 054027

Electrons from c/b decay
Possible explanation: *gluonsstrahlung*

- interactions may occur by gluon in-medium radiation (quenching)
- the amount of quenching depends on:
 - color charge: $C_R=4/3$, 3 if quark or gluon, resp. (Casimir factor)
 - heavy/light probes (b,c vs. direct pions)
 - quark mass (beauty/charm comparison)
 - *dead cone* effect

\[
\langle \Delta E \rangle \propto \alpha_s C_R \hat{q} L^2
\]

medium dependence

\[
\frac{1}{\left(\theta^2 + \left(\frac{m_Q}{E_Q} \right)^2 \right)^2}
\]

mass dependence

Dokshitzer, Kharzeev, PLB519 (2001) 199
Armesto, Salgado, Wiedemann, PRD69 (2004) 114003

Baier, Dokshitzer, Mueller, Peigné, Schiff, (BDMPS), NPB483 (1997) 291
Energy loss at LHC

- A promising strategy: study the p_t-dependent ratio…
 - …R_{AA} of D or B mesons produced in AA and pp: quark energy loss

 $R_{AA}^{D,B} (p_t) = \frac{1}{N_{coll}} \times \frac{dN_{AA}^{D,B}}{dp_t} / \frac{dN_{pp}^{D,B}}{dp_t}$

 - …between R_{AA}^B and R_{AA}^D (beauty/charm ratio): mass dependence

 $R_{D(B)/h} (p_t) = R_{AA}^B (p_t) / R_{AA}^D (p_t)$

 - …between $R_{AA}^{B/D}$ and R_{AA}^h (heavy/light probes): color charge dependence

 $R_{D(B)/h} (p_t) = R_{AA}^{D(B)} (p_t) / R_{AA}^h (p_t)$

- NB: study of charm detection performance done!
The ALICE Detector

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ≤</td>
<td>0.9</td>
<td>TPC + silicon tracker (ITS=SSD+SDD+SPD)</td>
</tr>
<tr>
<td>4 ≤</td>
<td>2.5</td>
<td>TPC + silicon tracker (ITS=SSD+SDD+SPD)</td>
</tr>
<tr>
<td>e/π, K, p,… separation in TRD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-4 ≤ η ≤ -2.5
muons
Detection strategy: $B \rightarrow e + X$

- Background sources:
 - pions misidentified as electrons
 - charm decay electrons
 - Dalitz decays
 - photon conversions
 - strangeness decays

- Signal: <1 electron/ev out of $\sim 10^3$ (all p_t's)!

- Detection strategy
 - electron ID in TPC + TRD
 - p_t cut-off
 - impact parameter cut-off
 - specific for pp: primary vertex optimization

- $c\tau \sim 500 \mu m \rightarrow$ compare with 100-300 μm from charm
- $m_b \sim 5$ GeV \rightarrow hard p_t spectrum

Krakow, July 7, 2006

Rosario Turrisi

"Perspectives for semileptonic beauty measurement with ALICE"
Impact parameter resolution

- d_0 resolution Silicon Pixel Detector
 - 2 layers, $R=4$ and 7 cm, $\sim 10^7$ channels

\[p_t > 1 \text{ GeV/c} \Rightarrow \sigma < 60 \text{ } \mu\text{m} \quad (r_\phi) \]

$\approx 12 \text{ } \mu\text{m}$ asymptotic

pixel size

50x425 μm
Electron separation

- Combined strategy TRD+TPC
 - TRD rejects 99% of pions and 100% of heavier hadrons (90% electron efficiency)
 - TPC (via dE/dx analysis) rejects again 99% of pions at 90% electrons efficiency (at low p_T's)
Electron spectra from b

- Results for electrons detection in:
 - pp, 14 TeV, 10^9 events (“one year run”)
 - PbPb, “one month run” 10^7 events
 - ALICE standard ‘underlying’ event $\rightarrow dN^{CH}/dy=6000$
 - systematic and statistical errors studied in detail

Krakow, July 7, 2006
Rosario Turrisi
"Perspectives for semileptonic beauty measurement with ALICE"
B-meson level cross section

Using electrons in $2 < p_t < 20$ GeV/c

MC-based procedure à la UA1*

obtain B meson $2 < p^\text{min}_t < 30$ GeV/c

E Loss Calculation: Armesto, Dainese, Salgado, Wiedemann, PRD71 (2005) 054027

Krakow, July 7, 2006 Rosario Turrisi "Perspectives for semileptonic beauty measurement with ALICE" 12/16
Beauty quenching

- Reconstruction of meson-level cross section (details on request…)
- R_{AA} (RHIC-like analysis) sensitivity to quenching/mass
- R_{BD} (pure quark, no quark/gluon effect) prefers mass effect

\[
R_{BD}^e(p_t) = \frac{R_{AA}^e\text{ from } B(\frac{dN}{dp_t})}{R_{AA}^e\text{ from } D(\frac{dN}{dp_t})}
\]

NB: study of charm detection performance done!
Beauty in the muon channel

- Muon spectrometer:
 - pseudorapidity coverage: -4 < η < -2.5
 - absorber + tracking chambers layers + trigger chambers (22 layers)
 - 15 interaction lengths, but p_t as low as 1-1.5 GeV/c
 - p_t resolution ~ 2%

5 bBar pairs / central Pb-Pb collision (5 %)

\[B^+ \rightarrow D^0 \ell^+_1 \nu_\ell \]
\[\rightarrow \ell^-_2 X' \]
\[\overline{B^0} \rightarrow D^+ \ell^-_3 \overline{\nu}_\ell \]
\[\rightarrow \ell^+_4 X'' \]

<table>
<thead>
<tr>
<th>%</th>
<th>(\mu^+)</th>
<th>(\mu^-)</th>
<th>(\mu^+\mu^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{geom}</td>
<td>12</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>A_{track}</td>
<td>75</td>
<td>46</td>
<td>51</td>
</tr>
<tr>
<td>(\varepsilon_{track})</td>
<td>62</td>
<td>29</td>
<td>34</td>
</tr>
<tr>
<td>(\varepsilon_{trigger})</td>
<td>53</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>(\varepsilon_{trigger})</td>
<td>29</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>
B-meson level cross section

- **Method:**
 - combined fit of 3 muon data samples (singles, low mass OS, high mass OS) with fixed shape and b amplitude as the only free parameter
 - MC to derive σ^B vs p_t^{min} with p_t as low as 1 GeV/c!
 - evaluate stat. and syst. errors

![Graph showing B-meson level cross section](image)

<table>
<thead>
<tr>
<th>p_t (GeV/c)</th>
<th>1.5-2</th>
<th>1.2-5</th>
<th>2.5-3</th>
<th>3-4</th>
<th>4-5</th>
<th>5-6</th>
<th>6-9</th>
<th>9-12</th>
<th>12-15</th>
<th>15-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal (fit)</td>
<td>4%</td>
<td>4%</td>
<td>3%</td>
<td>3%</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
<td>8%</td>
<td>12%</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td>Total pT-dep.</td>
<td>11%</td>
<td>11%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>11%</td>
<td>13%</td>
<td>16%</td>
</tr>
<tr>
<td>Decay of π,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4%</td>
</tr>
<tr>
<td>Normalisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9%</td>
</tr>
<tr>
<td>Total pT-indep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
</tbody>
</table>
Conclusions

- Heavy flavors can play an outstanding role as QCD test bench in AA reactions at LHC:
 - at low p_t, explore small-x region
 - at high p_t, probe the QCD extended medium via energy loss
- The studies outlined in this talk suggest that ALICE has a good potential in this field:
 - semielectronic decays in central barrel (-0.9 < η < 0.9)
 - semimuonic decays in muon arm (-4 < η < -2.5)

Same observable (E_{loss}) from two different analyses in the same experiment!

- ... and a lot has been left out:
 - charm hadronic and semileptonic decays
 - $e^{-}\mu$ coincidences
 - indirect J/ψ
 - b tagging via topological selections

- (Lot of) work in progress in the ALICE Physics Working Group 3 “heavy flavors”...
Errors evaluation on e’s spectra

- Estimation of errors:
 - MC corrections (efficiency, acceptance, etc.) fixed at 10%, p_T-independent.
 - Indetermination on charm subtraction evaluated using as reference our study on hadronic charm detection.
 - Normalization error not shown.

![Diagram showing relative error on beauty as a function of p_T for Pb-Pb and p-p collisions at different energies.](chart.png)
Energy loss at LHC

- A promising strategy: study the p_T-dependent ratio...

...R_{AA}^B of D or B mesons produced in AA and pp: quark energy loss

...between R_{AA}^B and R_{AA}^D (beauty/charm ratio): pure quark analysis

Calculation of energy loss at LHC energies:
Charm/light ratio

- $R_{(D)Bh}$ mass+color charge effect

\[R_{D/h}(p_t) = \frac{R_{AA}^D(p_t)}{R_{AA}^h(p_t)} \]
Extraction of a minimum-p_T-differential cross section for B mesons

* Using UA1 MC method (*), also adopted by ALICE µ

(thanks to R. Guernane for useful discussions)

The B meson cross section per unit of rapidity at midrapidity with $p_T^B > p_T^{\text{min}}$ is obtained from a scaling of the electron-level cross section measured within a given electron phase space Φ^e

$$
\frac{d\sigma^B}{dy}(p_T^B > p_T^{\text{min}}) = \sigma^{e,\text{beauty}}(\Phi^e) \bigg|_{\text{meas}} \times \frac{d\sigma^B}{dy}(p_T^B > p_T^{\text{min}}) \frac{1}{\sigma^B(\Phi^e)}
$$

$$
= \sigma^{e,\text{beauty}}(\Phi^e) \bigg|_{\text{meas}} \times F_{e \rightarrow B}
$$

The phase space used is $\Phi^e \equiv \{\Delta p_T, \Delta \eta, \Delta d_0\}$ where Δp_T are the previously used bins, $\Delta \eta = [-0.9, 0.9]$ and $\Delta d_0 = [200, 600] \mu$m

C. Albajar et al., UA1 Coll., Phys Lett B256 (1991) 121

Krakow, July 7, 2006 Rosario Turrisi "Perspectives for semileptonic beauty measurement with ALICE"
Systematic error for $F_{e \to B}$

- semi-electronic decay B.R.: $\sim 3\%$

- dependence on the shape of the B meson p_T distribution used as input in the MC: can be minimized using a proper choice of p_T^{min} for a given phase space $\Phi^e \rightarrow$ see following slides

- Monte Carlo correction for the efficiency of the selection cuts: this is, in principle, depending on the B meson p_T distribution, and should be then evaluated at this stage of the analysis. For the present feasibility study we account for it with a 10% systematic.
1) we used the $B \rightarrow e + X$ decays from PYTHIA.

$F_{e \rightarrow B}$ is the ratio of the red area to the blue one.

Here $\Delta p_T^e = [3,4] \text{ GeV/c}$
Extraction of a minimum-p_T-differential cross section for B mesons

Evaluation of $F_{e\rightarrow B}$ and determination of the optimal p_T^{min}

2) in the HVQNMPr program we changed:

the theory parameters:

a) quark mass and scales

b) nuclear modification of the PDFs

c) $b \rightarrow B$ fragmentation (Peterson)

d) add the quenching

($\hat{q} = 100 \text{ GeV}^2/\text{fm}$ (*)

Krakow, July 7, 2006 Rosario Turrisi "Perspectives for semileptonic beauty measurement with ALICE"
Extraction of a minimum-p_T-differential cross section for B mesons

Evaluation of $F_{e\rightarrow B}$ and determination of the optimal p_T^{min}

$\Delta F \sim 1\%$