Super B Factories

July 8, 2006

Physics at LHC Krakow

Masa Yamauchi KEK

Outline

- Introduction
- Achievements of the B factories and the next step
- Physics at SuperB
- Two Super B factory proposals
 - SuperKEKB
 - ILC inspired SuperB
- Summary

Achievements of the B Factories

Quantitative confirmation of the KM model

Another important achievement

■ Success of KEKB and PEP-II enabled us to design the next generation e^+e^- B factory with much higher $L_{\rm peak}$.

What is next with flavour physics

- If new physics at O(1)TeV...
 - It is natural to assume that the effects are seen in $B/D/\tau$ decays.
 - Flavour structure of new physics?
 - CP violation in new physics?
 - These studies will be useful to identify mechanism of SUSY breaking, if NP=SUSY.
- Otherwise...
 - Search for deviations from SM in flavor physics will be one of the best ways to find new physics.

New physics effect in B decays

G.Hiller

Likelihood for the effects of new physics to be seen in *B* decays.

Physics at SuperKEKB

New source of CP violation

New source of flavor mixing

LFV τ decays

Precision test of KM scheme

Charm physics

New resonances, $D^0\overline{D^0}$ mixing...

Super-high statistics measurements:

 $\alpha_{\rm S}$, $\sin^2\theta_{\rm W}$, etc.

SUSY breaking mechanism

Precision test of KM scheme

$$\Delta \sin 2\phi_1 = 0.014$$

$$\Delta \sin 2\phi_1 = 0.014$$

$$\Delta (f_B \sqrt{B_d}) = 0.005 \pm 0.015$$

$$\Delta \phi_3 = 1.2^{\circ}$$

 $\Delta |V_{ub}| = 4.4\%$

If tree-level and $b \rightarrow d$ mixing processes give inconsistent results,

...indicates something new in

or

Search for new CP phases

In general, new physics contains new sources of flavor mixing and CP violation.

▶ In SUSY models, for example, SUSY particles contribute to the $b\rightarrow s$ transition, and their CP phases change CPV observed in $B\rightarrow \phi K$, $\eta' K$ etc.

In general, if SUSY is present, the *s*-quark mixing matrix contains complex phases just as in the Kobayashi-Maskawa matrix.

Effect of SUSY phase θ_{SUSY} on CPV in $B \rightarrow \phi K$ decay

A possible hint for NP: $b \rightarrow s\overline{q}q$

Sensitivity to new CP phases

Estimated error in the measurement of time dependent CP violation

Search for new flavor mixing

: Probe the flavor changing process with the "EW probe".

This measurement is especially sensitive to new physics such as SUSY, heavy Higgs and extra dim.

Possible observables:

- ▶ Ratio of branching fractions
- Branching fraction
- CP asymmetry
- \rightarrow q^2 distribution
- Isospin asymmetry
- ▶ Triple product correlation
- Forward backward asymmetry
- ▶ Forward backward CP asymmetry

Theoretical predictions for l^+l^- forward-backward charge asymmetry for SM and SUSY model with various parameter sets.

The F/B asymmetry is a consequence of γ - Z^0 interference.

Sensitivity to new flavour mixing

"B meson beam" technique

Application

 H^{\pm} search in $B \rightarrow \tau v$ $m_b \tan \beta + m_u \cot \beta$ \overline{b} $m_{\tau} \tan \beta$ $m_{\tau} \tan \beta$

95.5%C.L. exclusion boundaries

Charm physics at B factories

 $D^0\overline{D^0}$ mixing may be observed at *B* factories with higher *L*.

Search for flavor-violating τ decay

SUSY + Seesaw

- Flavor violation by v-Yukawa coupling.
- Large LFV $Br(\tau \rightarrow \mu \gamma) = O(10^{-7\sim 9})$

$$BR(\tau \rightarrow \mu \gamma) \sim 10^{-6} \times \frac{(m_{\tilde{L}}^2)_{32}}{\overline{m}_L^2} (\frac{1 \text{ TeV}}{m_{SUSY}})^4 \tan^2 \beta$$

Comparison with LHCb/ATLAS/CMS

			l a	•
$\rho^+\rho^-$	10	20	lvantageous	ın
	I	au	varitageous	11 1

LHCb is advantageous in...

CPV in
$$B \rightarrow \phi K_S$$
, $\eta' K_S$,...

CPV in $B \rightarrow K_S \pi^0 \gamma$

$$B \rightarrow K \nu \nu, \tau \nu, D^{(*)} \tau \nu$$

Inclusive $b \rightarrow s \mu \mu$, see

 $\tau \rightarrow \mu \gamma$ and other LFV

$$D^0\overline{D^0}$$
 mixing

CPV in $B \rightarrow J/\psi K_S$

Most of B decays not including v or γ

Time dependent measurements of B_S

$$B_{(S,d)} \rightarrow \mu\mu$$

 B_C and bottomed baryons

These are complementary to each other!!

Goal: $\int L dt = 50-100 \text{ ab}^{-1}$

■ Most of the interesting measurements will be limited by unavoidable systematics when we reach 50-100 ab⁻¹.

Obs.	$\delta_{ m stat}$ with 50ab ⁻¹	$\delta_{ m syst}$ with 50ab ⁻¹	Theory err.
$\sin 2\phi_1$	0.004	0.014	~0.01
ϕ_2	1.2°	a few °	
ϕ_3	1.2°	O(1) °	
$ V_{ m ub} $	1%	~1%	~5 %
$S_{\phi K \mathrm{s}}$	0.023	0.020	
$A_{\phi K \mathrm{s}}$	0.016	0.018	
$S_{\mathfrak{\eta}^{\prime}K_{\mathbf{S}}}$	0.013	0.020	
$A_{oldsymbol{\eta'}K ext{S}}$	0.009	0.017	
DCPV in $b \rightarrow s \gamma$	0.003	0.002	0.003

KEKB

SuperKEKB

- Asymmetric energy e^+e^- collider at $E_{CM}=m(\Upsilon(4S))$ to be realized by upgrading the existing KEKB collider.
- Super-high luminosity $\cong 8 \times 10^{35}$ /cm²/sec $\rightarrow 1 \times 10^{10}$ BB per yr.

ightarrow 9×10 9 $au^{+} au^{-}$ per yr.

http://belle.kek.jp/superb/loi

Three factors to determine luminosity:

Stored current:

1.36/1.75 A (KEKB)

 \rightarrow 4.1/9.4 A (SuperKEKB)

Beam-beam parameter:

0.059 (KEKB)

 \rightarrow >0.24 (SuperKEKB)

Lorentz factor

$$L = \frac{\gamma_{\pm}}{2er_{e}} \left(1 + \frac{\sigma_{y}^{*}}{\sigma_{x}^{*}} \right) \frac{I_{\pm} \xi_{\pm y}}{\beta_{y}^{*}} \left(\frac{R_{L}}{R_{y}} \right)$$
Classical electron radius

Ream size ratio

Beam size ratio

Geometrical reduction factors due to crossing angle and hour-glass effect

Luminosity:

 $0.16 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} \text{ (KEKB)}$

 8×10^{35} cm⁻²s⁻¹ (SuperKEKB)

Vertical β at the IP:

6.5/5.9 mm (KEKB)

 \rightarrow 3.0/3.0 mm (SuperKEKB)

New Parameter Set for 8×10³⁵ -- by K. Ohmi

	SuperKEKB	Crab waist			
ех	9.00E-09	6.00E-09	6.00E-09	6.00E-09	6.00E-09
εγ	4.50E-11	6.00E-11	6.00E-11	6.00E-11	6.00E-11
βx (mm)	200	100	50	100	50
βy (mm)	3	1	0.5	1	0.5
σz (mm)	3	6	6	4	4
vs	0.025	0.01	0.01	0.01	0.01
ne	5.50E+10	5.50E+10	5.50E+10	3.50E+10	3.50E+10
np	1.26E+11	1.27E+11	1.27E+11	8.00E+10	8.00E+10
$\phi/2$ (mrad)	0	15	15	15	15
ξx	0.397	0.0418	0.022	0.0547	0.0298
ξу	0.794-10.24	0.1985	0.179	0.178	0.154
Lum (W.S.)	8E+35	6.70E+35	1.00E+36	3.95E+35	4.80E+35
Lum (S.S.)	8E35	4.77E35	5.65E36	3.94E35	4.27E35

· Good parameters are not yet found with crab waist.

Crab cavity

2. Bellows Chamber and Gate Valve

Application of Ver.2 to antechamber-type bellows

- Manufactured at BINP (2005)
- Copper cooling channel
 - Improve cooling of teeth
- Two bellows chamber were installed into LER wiggler (2005).
- No problem was found up to 1.7 A.

Proposed schedule

Super Belle

By previous KEK management

By previous KEK management

From B Factories to Super B factories

$$L = \frac{N_{e^+}N_{e^-}}{4\pi~\sigma_x\sigma_y} f_{\rm collision}$$
 Traditional design of B factories hits fundamental limits

- when scaled to $10^{36}/\text{cm}^2\text{s}$:
- Bunch Disruption: $(N\sigma_z/\sigma_x\sigma_y)$ upper bound set by beam-beam effects
- Hour glass effect ($\beta_v < \sigma_z$): lowering σ_v (and thus β_v) is ineffective
- Wall-plug power limit: upper bound on the Collision frequency
- New ideas... a new machine concept is needed!
- high luminosity from small σ_v and σ_z but also low disruption

Damping ring: ILC-like rings

- OCS lattice used (ILC D.R. are 6.0km Circumference)
- Scaled to 4 and 7 GeV (Y4S)
- Shortened to 3.2 Km (2.4 Km also possible)
- Wiggler field 1.4 T (permanent magnet)

Total Wall Power (60% transfer eff.): 32 MW Energy cost per produced B meson:16KJ/B Efficiency 50 x of the present B factories

Parameters set

Sigx* μm	2.67
Sigy nm	12.6
Betx mm	9.0
Bety mm	0.080
Sigz_IP mm	6.0
Sige_IP	1.3e-3
Sige_Lum	0.9e-3
Emix nm	0.8
Emiy nm	0.002
Emiz µm	8.0
Cross_angle mrad	2*25
Sigz_DR mm	6.0
Sige_DR	1.3e-3
Np 10e10	2.3
Nbunches	6000
DR_length km	3.0
Damping_time msec	20
Collision freq MHz	
L _{multiturn} 10 ³⁶	1.0

- Defined a parameters set based on ILC-like parameters
- Same Damping Ring (DR) emittances
- Same DR bunch length
- Same DR bunch charges
- Same DR damping time
- Same ILC-IP betas
- Crossing Angle and Crab
 Waist to minimize Beam
 Beam blowup

Crabbed focus: displace along Z the waist position for left, center, right particles

- •All components of the beam collide at a minimum β_{v} :
 - the 'hour glass' is reduced (effective luminous region length \sim 100 $\mu\text{m})$
 - the geometric luminosity is higher (5-10%)
 - the beam beam effects are reduced (factor 2-4)

P.Raimondi

Features

- Expected background in the detector lower than in PEPII (it allows a beam pipe diameter smaller than in PEPII/Babar).
- One polarized beam is also considered (an ad hoc subcommittee is presently looking to possible gains in physics from polarization)

More on machine

- Luminosity upgradeable by a substantial factor towards 10³⁷.
- Site to be chosen according to possible offer by Laboratories and funding agencies.
- Full international collaboration should be foreseen to build and run machine and detector.

Documents

- The Discovery Potential of a Super B Factory (SLAC-R-709)
- Letter of Intent for KEK Super B Factory (KEK Report 2004-4)
- Physics at Super B Factory (hep-ex/0406071)
- At the URL :
 - http://belle.kek.jp/SuperB
 - http://www.pi.infn.it/SuperB

SuperKEKB Internationalization

- "KEK + in-kind contribution from the others" is a favorable scenario for KEK.
 - KEK cannot afford to pay for all, because it will also support J-PARC and ILC R&D.
 - Better chance to get early approval by the Japanese Government.
- We are open to any proposal.
- A possible way: form an international steering group of Super B factory without having a specific site or technology selected.
 - Have both SuperKEKB and Linear Super B (and others, if any) in the scope.
 - Submit joint proposals to the possible host labs.

International study group

An international Study Group was set up coordinated by a steering committee with the aim of preparing a document (CDR) by the end of 2006. We had 2 workshops in Frascati:

November 2005

March 2006

Next 2 workshops:

- 14-17 june 06 in SLAC
- october 06 in Rome (Parallel: Theory, Expt., Machine) An Steering committee is coordinating the group activity

M.A.G. coordinator

Members: 1 Canada, 2 France, 2 Germany, 2 Italy, 2 Russia, 2Spain, 2'UK, 4 US.

Activity is documented in

http://www.pi.infn.it/SuperB

Summary

- KEKB/Belle and PEP-II/BaBar have been running very successfully, and brought important scientific achievements.
- Next generation e^+e^- B factory with $L>>10^{35}$ will be very useful to study the new sources of flavor mixing and CP violation.
- SuperKEKB upgrade has been proposed
 - How? Increase N_B , decrease β_v^* , and crab crossing: $L=8\times10^{35}$ /cm²/s
 - What? New beam pipe, crab cavity, new injector with damping ring. Belle will also be upgraded assuming DC is usable.
 - Where and when? Upgrade existing KEKB in 2009-2010.
- ILC inspired SuperB being proposed
 - ILC-like damping rung + final focus to achieve >10³⁶.
 - O(1)A beam current → lower detector background
 - Wall plug power ~32MW < KEKB/PEP-II
- Internationalization will be necessary for any Super B Factory to be realized.

Topics
Upsilon(5s) and Other Energies
New Ideas on Upsilon(4s)
SuperKEKB Physics
New Detectors

Local Organizing Committee

- S. Hashimoto (KEK),
- M. Hazumi (KEK, Chair),
- H. Ishino (TIT).
- K. Kinoshita (Cincinnati),
- Y. Okada (KEK),
- O. Tajima (KEK)

