

Quarkonia production in heavy-ion collisions with CMS at LHC

Bolek Wysłouch
Massachusetts Institute of Technology
for the CMS Collaboration

LHC Physics, Kraków 2006

CMS HI groups: Adana, Athens, Basel, Budapest, CERN, Demokritos, Dubna, Ioannina, Kiev, Krakow, Los Alamos, Lyon, MIT, Moscow, Mumbai, N. Zealand, Protvino, PSI, Rice, Sofia, Strasbourg, U Kansas, Tbilisi, UC Davis, UI Chicago, U. Iowa, U. Minnesota, Yerevan, Vanderbilt, Warsaw, Zagreb

July 7, 2006 CMS Quarkonia Bolek Wyslouch

Quarkonia: probe of high-density QCD media

■ Dissociation (color screening) = hot QCD matter thermometer

■ Probe of low-x gluon structure/evolution:

Quarkonia: from SPS and RHIC to LHC

- PbPb @ $\sqrt{s_{NN}}$ =5.5 TeV, pPb @ $\sqrt{s_{NN}}$ =8.8 TeV:
 - Factor x30-45 increase in energy compared to AuAu,dAu @ RHIC
 - 30-45 times lower Bjorken x=2mT/ \sqrt{s} , ~ 10-3 (10-5)
 - Large perturbative cross-sections.
 - High luminosities (high rates).

Heavy-ion physics at LHC:

- Plasma hotter, longer-lived than @ RHIC
- Access to lower x, higher Q²
- Unprecedented gluon densities
- Availability of new probes (Y,Y',Y")

J/ψ production in AA at the LHC

Statistical hadronization model A.Andronic et al., PLB 571(2003)36

LHC

■J/ψ at LHC will clarify SPS/RHIC suppression:

Onset of direct J/ψ suppression (T_D~1.5 -2.5 T_c)?

T production in AA at the LHC

- Large cross-sections: do/dy ~ 20 x RHIC
- Y melts only at LHC: TD~ 4 Tc
- Y unaffected by final-state interactions:
 - Small hadronic absorption
 - Small # bbar pairs \rightarrow small Υ regeneration

"Cleaner" probe than J/ψ

- Y spectroscopy:
- $T_D(\Upsilon') \sim T_D(J/\psi)$: Υ'/Υ vs p_T very sensitive to system temperature & size

Bolek Wyslouch

CMS Muon system

- 3 types of gaseous particle detectors for muon identification:
 - Drift Tubes (DT) in central barrel region
 - Cathode Strip Chambers (CSC) in endcap region
 - Resistive Plate Chambers (RPC) in barrel & endcaps
- precise measurement of muon position (momentum)
- fast info for LVL-1 trigger

CMS Muon system

- Drift Tubes (DT) in central barrel
- Resistive Plate Chambers (RPC) in barrel and endcaps
- Cathode Strip Chambers (CSC) in endcap region

Muon reconstruction

- Best muon spectrometer at LHC (CMS)
- Excellent coverage:
 - ~5 units of rapidity and 2π
- Strongest magnetic field: 4 T, 2 T (return yoke)
- Tag from mu-chambers, momentum resolution from Silicon tracker
- Ecal + Hcal + Magnet Iron absorbs hadrons
 - Barrel: $p_{T}^{\mu} > 3.5 \text{ GeV/c}$
 - Endcap: $p_L^{\mu} > 4.0 \text{ GeV/c}$
- Trigger at Level-1 and High Level Trigger

Simulation studies

Olga Kodolova, Marc Bedjidian CMS Note-2006/089

- Signals (J/ψ,Υ): CEM, NLO-pp, CTEQ5M+EKS98 PDF, T_{AA}-scaled
- Light-q background (π,K): HIJING normalized to dN_{ch}/dη=2500, 5000
- Heavy-Q background (c,b): NLO-pp, CTEQ5M+EKS98 PDF, TAA-scaled

Signal+Background

Estimate background using same sign di-muons

Subtracted background

July 7, 2006 CMS Quarkonia Bolek Wyslouch 9

PbPb $\rightarrow \Upsilon + X \rightarrow \mu^+\mu^- + X$ in CMS

■ MC simulation & visualization of Upsilon event (PbPb, dN/dη|_{η=0}= 3500) using pp software framework

July 7, 2006 CMS Quarkonia Bolek Wyslouch 10

J/ψ, Υ acceptances

- J/Ψ accepted above p_T~2 GeV/c (low-p_T muons absorbed in material at y=0, but punchthrough at y~2). High-p_T acceptance ~15%
- ↑ accepted (~35%) down to p_T=0 GeV/c. High-p_T acceptance ~15%

J/ψ triggering (p_T-η acceptance)

- Two different Level-1 settings:
 - L1 : optimized for high luminosity pp
 - OL1: low quality muon candidate (used in HI)
- L2 and L3: run on online farm
- Trigger condition: two L1 or L2 opposite-sign candidates + L3 (cut on "loose" µ)
- 26000 J/ψ generated: (OL1,L2) 252 events, (L1,L2) 113 events.

➤ Total trigger efficiency: 0.97% (OL1-L2 chain)

(acceptance folded in)

0.44% (L1-L2 chain)

Υ triggering (p_T- η acceptance)

- Two different Level-1 settings:
 - L1 : optimized for high luminosity pp
 - OL1 : low quality muon candidate (used in HI)
- L2 and L3: run on online farm
- Trigger condition: two L1 or L2 opposite-sign candidates + L3 (cut on "loose" μ)
- 15700 Y generated: (OL1,L2) 3322 events, (L1,L2) 2590 events.

➤ Total trigger efficiency: 21% (OL1-L2 chain)

(acceptance folded in) 16.5% (L1-L2 chain)

Dimuon efficiency & purity vs dNch/dn

■ Y→µµ embedded in PbPb event.

Efficiency:

•
$$\varepsilon(p,\eta) = \varepsilon_{\text{track-1}} \times \varepsilon_{\text{track-2}} \times \varepsilon_{\text{vtx}}$$

>80% for all multiplic. (barrel)

~65% for all multiplic. (barrel+endcap)

■ ~90% for all multiplicities

μμ mass spectra (signal+background)

- Pb-Pb, $dN_{ch}/dη_{ln=0} = 5000$, L = 0.5 nb⁻¹
- Background: π/K (90% of N_{ch}) $\rightarrow \mu\mu$ (BR=63%)
- Background: c-,b-hadrons → μ+X ("BR"~18%,~38%)
- Combinatorial backgd (mixed sources): 1 μ from π/K + 1 μ from J/ψ 1 μ from b/c + 1 μ from π /K

■ J/ψ, ψ' peaks seen (S/B~0.6)

All 3 \(\text{peaks seen (S/B~0.07)} \)

July 7, 2006 **CMS Quarkonia Bolek Wyslouch** 15

μμ mass spectra (signal+background)

- Pb-Pb, $dN_{ch}/dη|_{n=0} = 2500$, L = 0.5 nb⁻¹
- Background: π/K (90% of N_{ch}) $\rightarrow \mu\mu$ (BR=63%)
- Background: c-,b-hadrons → μ+X ("BR"~18%,~38%)
- Combinatorial backgd (mixed sources): 1 μ from π/K + 1 μ from J/ψ 1 μ from b/c + 1 μ from π /K

J/ψ,ψ' peaks seen (S/B~1.2)
_{CMS Quarkonia}

All 3 T peaks seen (S/B~0.12)

J/ψ mass spectra (like-sign subtraction)

- Best mass resolution at LHC:
 - $\sigma_{J/\psi}$ = 35 MeV/c² in barrel+endcap (i.e. both muons $|\eta|$ < 2.4)

Y mass spectra (like-sign subtraction)

Best mass resolution at LHC:

"high" multiplicity $dN_{ch}/d\eta|_{n=0} = 5000$

 σ_{γ} = 54 MeV/c² (barrel), and σ_{γ} = 90 MeV/c² (barrel+endcap)

QQbar rates at CMS (1 nominal PbPb run)

■ Pb-Pb 5.5 TeV: 1-month, L = 0.5 nb⁻¹

Table 6.1: Signal-to-background ratios and expected quarkonia yields in one month of PbPb running (0.5 nb⁻¹ integrated luminosity) for two multiplicity scenarios and two η windows.

$dN_{ch}/d\eta _{\eta=0}$, $\Delta\eta$	S/B	$N(J/\psi)$	S/B	N(Y)	$N(\Upsilon^{'})$	$N(\Upsilon^{''})$
2500, $ \eta < 2.4$	1.2	180 000	0.12	25 000	7300	4400
2500, $ \eta < 0.8$	4.5	11 600	0.97	6400		3
5000, $ \eta < 2.4$	0.6	140 000	0.07	20 000	5900	3500
5000, $ \eta < 0.8$	2.75	12 600	0.52	6000		

 J/ψ,Υ statistics = O(10⁵),O(10⁴): differential studies (dN/dp_T, dN/dy, centrality, ...) possible

July 7, 2006 CMS Quarkonia Bolek Wyslouch 19

Summary

- $J/\psi,\Upsilon$ = excellent probes of QCD media in A+A:
 - Step-wise "melting" pattern = absolute QGP thermometer
 - Production via gg fusion = probe of low-x QCD structure&evolution (CGC)
- Simulation studies of J/ ψ , $\Upsilon \rightarrow \mu\mu$ in CMS (PbPb @ $\sqrt{s_{NN}}$ =5.5 TeV):
 - Geometrical acceptances: ~15% (at high p_T)
 - Dimuon efficiency ~80% and purity ~90%, for all multiplicities
 - Best mass resolutions at LHC: σ_{QQ} ~ 1% m_{QQ} (barrel+endcap) $\sigma_{J/\psi}$ = 35 MeV/c² (barrel+endcap), σ_{Υ} = 54 MeV/c² (barrel alone)
 - Full separation of Υ family: bottomonium spectroscopy
 - Signal/Background: ~ 5(1), ~1(0.1) for J/ψ,Υ in barrel (+endcaps)
 - High rates expected (per year):
 - \bullet J/ ψ ~ 180 kevents, Υ ~ 25 kevents, Υ ~ 7 kevents, Υ ~ 4 kevents
- Detailed differential studies (dN/dp_T, dN/dy, centrality, ...) of QCD matter possible!

Thanks to many members of the (growing) CMS heavy-ion group for help in preparation of this talk

Backup Slides

Heavy-quarks decays: b,c $\rightarrow \mu / J/\psi + X$

- J/ψ from B decays: ~20% all J/ψ at LHC
- Secondary vertex finding and correlated background rejection:

I. Lokhtin, CMS-NOTE 2001/008

δr is transverse distance between the points of closest approach to the beam for two different muon tracks

Parametrized resolution
Not a full simulation