Heavy Ion Physics with CMS

David Hofman UIC

CMS Heavy-lon Groups:

Adana, Athens, Basel, Budapest, CERN, Demokritos, Dubna, Ioannina, Kiev, Krakow, Los Alamos, Lyon, Minnesota, MIT, Moscow, Mumbai, N. Zealand, Protvino, PSI, Rice, Sofia, Strasbourg, U Kansas, Tbilisi, UC Davis, UI Chicago, U. Iowa, Yerevan, Warsaw, Zagreb

PHYSICS AT LHC

3-8 July 2006 CRACOW POLAND

Insight from RHIC

Importance of covering both soft and hard sectors.

Challenges to both detector construction and triggering.

Be prepared for surprises.

Elliptic Flow: PHOBOS NPA 757, 28

Jet Suppression: STAR PRL 91, 072304

Heavy Ions: From RHIC to the LHC

■ Factor 28 increase in energy to √s_{NN}=5.5 TeV

High Luminosity

- Large Cross sections
 - High p_T particles
 - Jets, which are now directly identifiable
 - J/ψ and Υ -family production

GOAL: Study matter at the highest energy density

Expanded Kinematics at the LHC

LHC provides access to the widest range of Q² and x

Heavy-lons in CMS

MC simulation/visualization of Pb+Pb event $(dN_{ch}/d\eta|_{\eta=0} \sim 3000)$ using the pp software framework

Overview: CMS Detector Coverage

High Bandwidth Trigger & DAQ Sophisticated High Level Trigger Capability

CASTOR

ZDC

 $5.2 < |\eta| < 6.6$

Central Region of CMS

Tracking + Ecal + Hcal + Muons for $|\eta| < 2.4$

Si TRACKER

Silicon Microstrips and Pixels

CALORIMETERSECALHCALScintillatingPlastic sPbWO₄ crystalssandwic

HCAL Plastic scintillator/brass sandwich

MUON BARREL

Drift Tube Resistive Plate Chambers (**DT**) Chambers (**RPC**)

Pixel: 100x150μm², Inner Strips: 80μmx6.1cm, Outer Strips: ~150μmx9.1cm 70M Pixel channels, 11M Strip channels

Tracker in a HI Environment

Simulated Central Pb+Pb Event

(HIJING+OSCAR+IGUANA)

Pixel Detector Occupancy of < 2%

(less than 10% for outermost layers)

- \rightarrow Key for successful tracking
- \rightarrow Excellent soft physics capabilities

Including Pulse Height Information

 \rightarrow Allows correction of detector effects \rightarrow Provides useful dE/dx information

Charged Particle Multiplicity: dN_{ch}/dη

- High granularity pixel detectors
- Pulse height in individual pixels to reduce background
- Very low p_T reach, p_T>26 MeV (counting hits!)

Single Pb+Pb Event

$\cosh \eta$ dependence of SumADC

Track Finding Capability

(Pb+Pb collisions; $dN_{ch}/d\eta|_{\eta=0} \sim 3000$)

Optimized for Low Fake Rate

Optimized for High Efficiency

Track Reconstruction Performance

(Pb+Pb collisions; $dN_{ch}/d\eta|_{\eta=0} \sim 3000$)

Momentum Resolution

→ Excellent resolution at the highest particle densities

Track-pointing Resolution

Jet Reconstruction in a HI Environment

Central Pb-Pb Collision HIJING, $dN_{ch}/d\eta|_{\eta=0} \sim 5000$

Event-by-Event η-dependent background subtraction + Iterative jet cone-finder algorithm

Efficiency, purity

Measured jet energy

Jet energy resolution

Jet spatial resolution: $\sigma(\phi_{rec} - \phi_{gen}) = 0.032; \sigma(\eta_{rec} - \eta_{gen}) = 0.028$ \rightarrow Similar Results for Endcap

Jet studies using the tracking

Centrality dependence of p_T spectra

Fragmentation functions:

p_T with respect to jet axis:

Forward Region Layout

Excellent Event Characterizations Good Event Selection and Centrality Determination

Energy in Forward HCal

Correlations with the ZDC

Event Characterizations II

Reaction-Plane Determination

Single Pb+Pb collision (Hydro) at b=6 fm

Muons

- Excellent Coverage
 - In central rapidity region and 2π
- Cal + Magnet Iron Absorbs Hadrons

Barrel $p_{T}^{\mu} > 3.5 \text{ GeV/c}$ • Endcap $p_{\tau}^{\mu} > 1.5 \text{ GeV/c}$

- Triggering available at all levels
- Tag from Muon chambers, momentum resolution from the Silicon Tracker
- Excellent Mass resolution in Pb+Pb event with $dN_{ch}/d\eta|_{\eta=0} \sim 3000$ - $\sigma_M = 54 \text{ MeV/c}^2 \text{ for } Y \rightarrow \mu^+\mu^- (|\eta| < 0.8)$

 - $\sigma_{\rm M} = 90 \text{ MeV/c}^2$ for Y $\rightarrow \mu^+\mu^-$ ($|\eta| < 2.4$)
- Reconstruct Z⁰ boson

Upcoming talk by Bolek Wyslouch

Balancing γ , γ^* or Z⁰ vs Jets

 \rightarrow Study of jets with known energy – learn about quark energy loss

Physics at LHC - Cracow 2006

Triggering in Heavy Ions

Level 1 trigger

- Uses custom hardware
- Muon tracks + calorimeter information
- Decision after $\sim 3 \mu sec$

Level-1	Pb+Pb	p+p
Collision rate	3kHz (8kHz peak)	1GHz
Event rate	3kHz (8kHz peak)	32MHz
Output bandwidth	100 GByte/sec	100 GByte/sec
Rejection	none	99.7 %

High level Trigger

- ~1500 Linux servers (~10k CPU cores)
- Full event information available
- Runs "offline" algorithms (~3 sec per HI event)

High Level Trigger	Pb+Pb	p+p
Input event rate	3kHz (8kHz peak)	100kHz
Output bandwidth	225 MByte/sec	225 MByte/sec
Output rate	10-100Hz	150Hz
Rejection	97-99.7%	99.85%

Heavy Ion Physics Program in CMS

Soft physics and global event characterization

- Centrality and good event selection
- Charged particle multiplicity
- Azimuthal asymmetry (Flow)
- Spectra + Correlations

High p_T Probes

- High p_T Jets detailed studies of jet fragmentation, centrality dependence, azimuthal asymmetry, flavor dependence, leading particle studies
- High energy photons, Z⁰
- jet-γ, jet-Z⁰, multijet events
- Quarkonia (J/ ψ , Υ) and heavy quarks

Forward Physics

- Limiting Fragmentation, Saturation, Color Glass Condensate
- Ultra Peripheral Collisions
- Exotica

Physics at LHC - Cracow 2006

Zero Degree Calorimeter

- <u>Tungsten-quartz fibre</u> structure
- electromagnetic section: 19X₀
- <u>hadronic</u> section $5.6\lambda_0$
- ► <u>Rad. hard</u> to ≈20 Grad (AA, pp low lum.)
- Energy resolution: ≈10% at 2.75 TeV
- ▶ <u>Position</u> resolution: ≈2 mm (EM sect.)

