

Outline:

Experimental layout and status of the main sub-systems
 Detector performance
 Examples of ALICE physics potential

Eugenio Nappi on behalf of ALICE Collaboration

LHC: "The biggest step in energy in the history of heavy-ion collisions"

Running parameters

Collision system	$\sqrt{s_{NN}}$ (TeV)	$L_0 (cm^{-2}s^{-1})$	<l>/L₀(%)</l>	Run time (s/year)	σ_{geom} (b)
pp	14.0	10 ³⁴		107	0.07
PbPb	5.5	1027	50	10 ⁶	7.7

• Hard processes contribute significantly to the total AA cross-section $\sigma_{hard}/\sigma_{total} = 98\%$ (50% at RHIC)

- Probe matter at very early times (QGP)
- > Heavy quarks and weakly interacting probes become accessible
- > Predictions by pQCD \rightarrow precision measurements
- Other collision systems: pA, lighter ions (Sn, Kr, Ar, O) & energies
- Study dependence on energy density & volume

LHC Heavy Ion Programme

Running time:

- ~ 4 weeks/year (10⁶ s effective); typically after pp running (like at SPS)
- first HI run expected end 2008 (1/20th design luminosity)

Luminosity:

- 10²⁷ (Pb) to >10³⁰ (light ions) cm⁻²s⁻¹ => rate from 10 kHz to several 100 kHz
- integrated luminosity 0.5 nb⁻¹/year (Pb-Pb)

One dedicated HI experiment: ALICE Two pp experiments with HI programme: ATLAS and CMS

ALICE Physics Programme

ALICE covers in one experiment what at the SPS was investigated by 6-7 experiments, and at RHIC by 4

- Global properties
 - **Δ** Multiplicities, η distributions
- Degrees of Freedom vs Temperature
 - Hadron ratios and spectra
 - Dilepton continuum
 - Direct photons
- Collective effects
 - Elliptic flows
- De-confinement
 - Charmonium, bottonium spectroscopy
- Chiral symmetry restoration
 - Neutral to charge ratio
 - Resonance decays
- Partonic energy loss in QGP
 - Jet quenching, high p_T spectra
 - Open charm and beauty
- Geometry of emission
 - HBT, zero-degree energy flow
- Fluctuations and critical behavior
 - Event-by-event particle composition and spectroscopy
- Proton-proton collisions in a new energy domain

Eugenio Nappi on behalf of ALICE Collaboration

More on ALICE Physics

• Physics Performance Reports

Published in two volumes: PPR Vol I: CERN/LHCC 2003-049 and ALICE coll. (2004) J. Phys. G 30 1517 – 1763 PPR Vol II: CERN/LHCC 2005-030 (part 1 & part 2) in press in J. Phys. G

Talks in the working group session:

First physics with ALICE detector C. Jorgensen Physics with ALICE transition radiation detector Heavy-flavour production with ALICE Soft physics in ALICE

Poster session

Short lived resonances in ALICE

K. Oyama R. Turrisi A. Mastroserio

F. Riggi

The Alice Collaboration

90 Institutions

A large community which has been constantly growing over the years, and still grows:

Spain joined few weeks ago

13 US institutions submitted aproposal to DOE of about10 M\$ for a large EMCAL in ALICE

Brazil is applying for membership

Physics at LHC Cracow, July 3-8, 2006

6

ALICE Design Parameters

- Guideline: to measure flavor content and phase-space distribution event-by-event
 - Track and identify most (2π * 1.8 η units) of the hadrons from very low (< 100 MeV/c; soft processes) up to fairly high p_T (~100 GeV/c; hard processes)
 - Vertex recognition of hyperons and D/B mesons in an environment of very high charged-particles density (up to dN/dη = 8000)
 - Dedicated & complementary systems for di-electrons and dimuons
 - **Excellent photon detection** (in $\Delta \phi = 45^{\circ}$ and 0.1 η units)
 - High throughput DAQ system + powerful online intelligence ('PC farm')

Compromise: the fragmentation region is not addressed (difficult at LHC, y_{beam}=9)

ALICE Experimental Layout

ALICE now

Installation of Services (cables, cooling L gas pipes) ongoing

9

Solenoid ('L3') and Muon Dipole: assembled and commissioned field mapping done

Eugenio Nappi on behalf of ALICE Collaboration Physics at LHC Cracow, July 3-8, 2006

Space frame, Muon Filter and Absorber: installation completed

Inner Tracking System

10

Eugenio Nappi on behalf of ALICE Collaboration

Silicon Pixel Detector

Challenge: track densities at r = 4 cm (1st layer): up to 100 / cm²

50 μ m ($\rho\phi$) x 425 μ m (z) pixel cell spatial resolution ($r\phi$, z) : 12 μ m, 100 μ m

STATUS

Production is progressing well
Four sectors (~4 M channels) out of ten are under test in the DSF at CERN
1st half-barrel service integration successfully completed
Ready for installation: Nov '06

Eugenio Nappi on behalf of ALICE Collaboration Physics at LHC Cracow, July 3-8, 2006

Silicon drift detector

sensor active surface: $75.3 \times 70 \text{ mm}^2$

2x291 cathodes pitch 120 μm cell size (rφ,z): 294 x 150 μm²

spatial resolution (rφ, z) : 35 μm, 23 μm

analogue R/O (dE/dx) SDD detector mounting on ladder

Physics at LHC Cracow, July 3-8, 2006

STATUS

- Sensor production completed
- Module (260 in total) assembly accomplished
- Ladder assembly in progress
- Ready for installation: Dec. 06

Silicon Strip Detector

- 42 mm long strip (pitch 95 μ m), double sided silicon detectors
- amplitude readout, charge matching & dE/dx
- t u v w arrangement ($\Theta_1 = 18 \text{ mrad}, \Theta_2 = 36 \text{ mrad}$)

cell size (r ϕ ,z): 95 x 4200 μ m² spatial resolution (r ϕ) 20 μ m spatial resolution (z) 830 μ m

STATUS

- Module production
 completed
- 50% of the ladders
 assembled and tested
- Service integration in progress
- Ready for installation:
 - **December 06**

t u

V W

 Θ_1

 Θ_{2}

Eugenio Nappi on behalf of ALICE Collaboration Physics at LHC Cracow, July 3-8, 2006

Status of ITS support structures

Assembly of the ladder positioning elements completed for both SDD and SSD

Eugenio Nappi on behalf of ALICE Collaboration Physics at LHC Cracow, July 3-8, 2006

Time Projection Chamber

the largest gaseous detector ever built (95 m³)
of Pixels:570,132 pads x 500 time bins
corresponding to ~3×10⁸ pixels in space

Readout plane segmentation 18 trapezoidal sectors each covering 20 degrees in azimuth

High structural integrity with low-mass and low-Z material (composite structures: Nomex, Tedlar, fiber matrices) X/X0~3%

Eugenio Nappi on behalf of ALICE Collaboration

TPC Field Cage and RO Chamber Installation

Eugenio Nappi on behalf of ALICE Collaboration Physics at LHC Cracow, July 3-8, 2006

TPC commissioning with cosmics and laser beams

FORTS OF VIEWER

17

Istituto Nazio di Fisica Nucl

Transition Radiation Detector

Transition Radiation Detector Status

Reached 50 % of the chamber production

Start installation in April 2007

Eugenio Nappi on behalf of ALICE Collaboration Physics at LHC Cracow, July 3-8, 2006

Time of Flight

A revolution in technology: a standard TOF system built of fast scintillators + photomultipliers would cost > 100 MCHF

157,248 channels total sensitive area: ~150 m²

Eugenio Nappi on behalf of ALICE Collaboration Physics at LHC Cracow, July 3-8, 2006

Time of Flight Status

-1st Supermodule: modules tested, mechanical structure mounted, cabling completed. Installation trial ongoing - 2nd Supermodule: modules in the Cosmic test facility at CERN - 3rd Supermodule: working on the module assembly - Start installation in the cavern in April 07

Eugenio Nappi on behalf of ALICE Collaboration Physics at LHC Cracow, July 3-8, 2006

MUON spectrometer set-up

Complex absorber/small angle shield system (~10 λ_I) to minimize background (90 cm from vertex)

> 5 stations of high granularity pad tracking chambers, over 1 million channels

Dipôle

Eugenio Nappi on behalf of ALICE Collaboration

0.7 T, bending power 3 Tm

World's largest warm dipole

4 MW power, 800 tons

Physics at LHC Cracow, July 3-8, 2006

RPC Trigger Chambers

Absorbeur

Lepton Acceptance

ATLAS & CMS present a large lepton acceptance $|\eta| < 2.4$ ALICE combines muonic and electronic channels

- covers the low p_T region (quarkonia)
- covers the forward region 2.5< η <4.0

MUON Spectrometer Status

24

Eugenio Nappi on behalf of ALICE Collaboration

Single arm sub-systems and forward detectors

PHOton Spectrometer ~ 20,000 PbWO₄ crystal calorimeter 20 radiation lengths

Eugenio Nappi

High Momentum PID CsI-RICH counter

on behalf of ALICE Collaboration 25

Physics at LHC Cracow, July 3-8, 2006

collision counters:

T0, FMD, V0,

ZDC

HMPID & PHOS Status

HMPID: module assembly completed. Installation in L3 in August 2006 PHOS: Crystal production: ~11,000 (of 18,000) accepted 1st module completed

Eugenio Nappi on behalf of ALICE Collaboration

Beam-beam counters

Production on schedule Installation of first set in November 06 Installation of second set in April 07

Eugenio Nappi on behalf of ALICE Collaboration Physics at LHC Cracow, July 3-8, 2006

FMD

EMCAL

Joint project between US and Europe (Italy and France)

Lead-scintillator sampling calorimeter $|\eta| < 0.7$, $\Delta \phi = 110^{\circ}$ (Total Pb depth = 124 mm = 22.1 XO)

Shashlik geometry, APD photosensor PHOS Readout electronics ~13k towers ($\Delta\eta$ · $\Delta\phi$ ~0.014·0.014)

It will enhance the ALICE capabilities for jet measurement. It enables triggering on high energy jets (enhancement factor 10-15), reduces the bias for jet studies and improves the jet energy resolution.

first SM under construction as 'pre-production prototype' schedule: ~ 50% for 2009 run, 100% for 2010

EMCAL Potentiality

- Essential jet measurements: modification of fragmentation in dense matter + response of the medium to the jet
 - cross sections are huge: rate is not a primary issue
 - calorimetry alone insufficient: physics lies in detailed changes of fragmentation patterns and correlations, including low pT
- Requirements for jet measurements:
 - precise tracking over very broad kinematic range (TPC+ITS)
 - PID
 - detailed correlations of soft and hard physics
 - jet trigger (EMCAL)

EMCAL brings unique capabilities to LHC heavy ion program

Eugenio Nappi on behalf of ALICE Collaboration

Alice Simulation Model

ALIROOT maps, visualizes and performs tracking from GEANT3 geometry setup Big challenge: particle multiplicity in Pb-Pb collisions

 \Box Simple scaling from RHIC data: safe guess dN_{ch}/dη ~ 1500 - 6000

□ ALICE optimized for $dN_{ch}/d\eta$ = 4000, operational up to 8000 (safety factor 2)

Impact Parameter Resolution and Vertex resolution

Mass

resolution

6÷8 MeV

3÷4 MeV

31

Impact parameter resolution is crucial for the detection of short-lived particles: charm and beauty mesons and baryons Determined by pixel detectors: at least one component has to be better than 100 μ m (c τ for D⁰ meson is 123 μ m)

better than 40 μ m for p_T > 2.3 GeV/*c* ~20 μ m at high p_T

Position

resolution

200÷300 μm

~500 µm

Eugenio Nappi

on behalf of ALICE Collaboration

 $\begin{array}{c|c} \textbf{Correlation of two} \\ \textbf{innermost pixel layers} \\ \textbf{(without tracking)} \end{array} \begin{array}{c} \textbf{At beam axis 1cm off beam axis} \\ \sigma x = 15 \ \mu m \\ \sigma y = 15 \ \mu m \\ \sigma z = 5 \ \mu m \end{array} \begin{array}{c} \sigma x = 25 \ \mu m \\ \sigma y = 25 \ \mu m \\ \sigma z = 5 \ \mu m \end{array}$

 \mathbf{K}^{0}_{s}

Λ

For track densities dN/dy = 2000 -4000, combined tracking efficiency well above 90% with <5% fake track probability resolution ~ 5% at 100 GeV/c excellent performance in hard region!

I N F N

lstituto N di Fisica I

Eugenio Nappi on behalf of ALICE Collaboration

Multiplicity measurement

Redundant techniques:

- CLUSTERS on innermost ITS layers (Silicon Pixels)
- TRACKLETS with 2 innemost layers of ITS (Silicon Pixels)
- FULL TRACKING (ITS+TPC)
- ENERGY DEPOSITION in the pads of Forward Multiplicity Detector (FMD)

Charged Particle Identification

Example of a high multiplicity event as seen by the HMPID

😥–¤ RICH Display

• 🗆 🗙

Extension of PID by dE/dx to higher momenta

Eugenio Nappi on behalf of ALICE Collaboration

Open Charm Detection in Hadronic Decays						
d_0^K	$ \begin{array}{c} \pi \\ \Theta_{0} \\ d_{0}^{K} \\ d_{0}^{\pi} \end{array} $		~0.55 D ⁰ →K ⁻ π ⁺ accepted/event important also for J/ψ normalization			
$\frac{1}{2000}$		S/B initial (M±3σ)	S/B final (M±1σ)	Significance S/√S+B (M±1σ)		
	Pb-Pb Central (<i>dN_{ch}/dy</i> = 6000)	5 · 10 ⁻⁶	10%	~35 (for 10 ⁷ evts, ~1 month)		
4000	pPb min. bias	2 · 10 ⁻³	5%	~30 (for 10 ⁸ evts, ~1 month)		
0 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 Invariant Mass [GeV]	рр	2 · 10 ⁻³	10%	~40 (for 10 ⁹ evts, ~7 months)		

