Search for a standard model Higgs the H→γγ **channel with the ATLAS detector**

Carminati Leonardo

INFN and Milano University on behalf of the ATLAS collaboration

outline

Introduction (II) Overview of main experimental issues (III) Analysis details and results (IV) Summary and conclusions

(I) Introduction: why the H→γγ channel?

 \square Current indications are for a Current indications are for a

'light Higgs' : search for Higgs $\frac{8}{6}$

in mass region in mass region 114 < m_H < 200 GeV is crucial

□ Although the situation is evolved wrt physics TDR the channel is still important in the low mass range $(M_H< 140 GeV)$

 \Box Inclusive analysis? Robust, less dependent on MC assumptions.

(I) Introduction: H→γγ analysis key ingredients

- •H→γγ is a rare decay mode with BR ∼ 10-3 (2.186 10⁻³ for M_H=120 GeV)
- • The signal should be visible as a small peak above the γγ continuum background
- •Good energy resolution of the em calo

- \blacksquare Irreducible background consists of genuine photons pairs continuum. $~125$ fb/GeV @NLO for MH=120 GeV (after cuts and photon efficiency)
- background signalbackground

signal

an
M

- Reducible background comes from jet-jet and gamma-jet events in which one or both jets are misidentified as photons (Reducible / irreducible cross section (LO-TDR) ~2x10⁶(jj) and ~ 8x10²(γj))
	- \blacksquare **Excellent jet rejection factor (> 10³) for 80%** γ **efficiency**
	- Severe requirements on particle identification capabilities of the detector especially the em calorimeter

(I) Introduction: what's new?

- Several changes in simulations/reconstruction
	- Most updated detector geometry
	- Massive MC production (signal + irreducible background) during Data Challenge 1 (~2003)
- Lot of improvements in theory and MC:
	- Newer versions of PYTHIA (6.224) and parton distribution functions sets (CTEQ6L1 – CTEQ6M)
	- Signal and backgrounds cross sections known @ NLC
	- New MC tools for the analysis (ResBos, Diphox)
- Exclusive analyses: studies to test the discovery potential in the H+1 jet, VBF and combined (only mentioned in this talk)

(II) Photon identification / jet rejection

(II) Photon identification / jet rejection

Effect of the strips: presence of a second maximum ($Δη = 0.003$)

Effect of track isolation

(II) DC1 inclusive analysis: photon identification / jet rejection

• Higher rejection against gluon initiated jets than quark initiated jets

Jet rejection \sim 5000 (P_T > 25 GeV) 80% average photon efficiency

(II) DC1 inclusive analysis: photon calibration

• Fixed cone clusters have been used: 3x7 (middle granularity) for converted photons while 3x5 (5x5) for unconverted photons in the barrel (endcap)

$$
E_{rec} = \lambda \cdot (w_{ps} E_{ps} + E_{str} + E_{mid} + w_{back} E_{back})
$$

- • Weight for the presampler and back to correct for upstream material energy losses and longitudinal leakage
- •The $P_T > 25$ GeV cut protects against linearity problems
- • Refined energy after corrections :
	- \mathbf{L} out of cone (shower lateral containment)
	- \Box accordion modulation corrections (eta and phi)
- • Refined position using the following corrections:
	- \Box S – shape for for strips and middle
	- \Box Phi offset (middle only)

(II) DC1 inclusive analysis: primary vertex reconstruction

Low luminosity:

> $\overline{}$ ■ Use calorimeter η measures from strips and middle + Z $_{\rm v}$ measure from ID ($\sigma_{\rm z}$ =40 μ m)

- High luminosity:
	- Conservative : no use of ID. Photons direction obtained with calorimeter information only: crucial role for fine η segmented strips layer
- $\mathcal{L}_{\mathcal{A}}$ For early conversions $(R_c < 40$ cm and $|z_c|$ <220 cm) the vertex also included in both cases:
- Primary vertex resolution with em calorimeter only : ∼ **16.5 mm 16.5 mm**

(III) Analysis cuts and reconstruction:

Analysis flow:

- •Events with 1 γ in the electromagnetic calorimeter cracks excluded (bad energy resolution):
	- $|\eta|$ <0.05, 1.4< $|\eta|$ <1.55 and $|\eta|$ >2.45
- • Transverse momentum cuts (background rejection):
	- p_T(1)>40 GeV, p_T(2)>25 GeV
- •Photon identification cuts applied to all egamma candidates
- •Photon reconstruction and calibration
- \bullet 0.7% constant term to the photons reconstructed energies added (mechanics, calibration, HV variations…not included in the detector simulations yet). Work in progress for "as built as installed" simulations
- •The direction of both photons is corrected for the primary vertex position
- Leonardo Carminati Physics at LHC 2006 10 •Invariant mass distribution of the two photons is reconstructed

(III) Higgs invariant mass reconstruction

Low lumi: 1.36 GeV80.9% inside +- 1.4 σ

High lumi: 1.59 GeV 80.9% inside +- 1.4 σ

(III) Higgs invariant mass reconstruction

(III) NLO cross sections

- • Gluon-gluon fusion events generated from ResBos (K factor ∼ 1.8)
- VBF from PYTHIA 6.224 (LO) + 1.04 K factor (from ResBos and HiGlu)
- •Associated production from PYTHIA (LO)
- H→γγ branching ratio of PYTHIA corrected with HDecay
- DIPHOX and ResBos : treatment of the background at NLO
- Increase of 47 % due to the LO -> NLO transition
- \bullet @NLO ~125 fb/GeV for M_H=120 GeV (after cuts and photon efficiency)

Reducible
background background Reducible
Reducible

Signal

Irreducible

rreducible

background

ackground

- • jet/jet events dominated by gluon initiated jets (easier to reject) while γ/jet events dominated by quark initiated jets
- the total contribution @LO is close to TDR although dominated by γ /jet : ~ 20 fb/GeV
- •K factor \sim 1.7: at NLO \sim 30 % of irreducible back.

(III) Inclusive analysis results (NLO)

Signal and background rates: NLO low lumi (30fb-1)

(III) Inclusive analysis results (NLO)

Signal significance for counting experiment: S/ \sqrt E

Leonardo Carminati Physics at LHC 2006 15

(III) Inclusive analysis results (NLO)

 \square Contributions to the uncertainty on the significance have been estimated:

- 37 % on the signal (parton density functions, order of perturbative development, scale dependence)
- 18 % on the irreducible background

• A factor of 3 on γ/jet and 5 on jet/jet background: mainly from fragmentation (tipically $\pi^0 \!\!\rightarrow\!\! \gamma\gamma$), detector effects, higher order corrections to cross sections.

 \square Systematic uncertainty on the significance \sim 30 $\%$

□ An additional 10% lowering factor from background subtraction using sidebands

(IV) Summary of inclusive analysis in one picture

(III) Improvements to the standard inclusive analysis

- • Improve the discovery potential using the shape of kinematical variables
	- One has to assume some theoretical knowledge

- • Likelihood ratio method based on P_T and $\mathsf{cos}\theta$ ∗ (well predicted in NLO calculations) of signal and background
- • Each event is weighted by the likelihood ration
- • With a likelihood analysis a further 30-40% improvement in the discovery potential has been reported.

What at the beginning of data taking? Difficult to say...

In a basic inclusive analysis at least 10 fb-1 are required to have a $>$ 3 σ signal significance

 \blacksquare With 10 fb⁻¹ a 5 σ signal significance only achievable using additional kinematical assumptions such as a likelihood ratio method or in combined analysis (VBF $+$ H+1Jet $+$ Inclusive)

Summary

- $\overline{}$ Impact of the detector performance on the discovery potential has been readressed with the most updated detector knowledge: only a slight degradation wrt TDR (<10%) has been observed.
- \blacksquare Complete NLO study available: K factors included in the analysis and uncertainties on the discovery potential estimated
	- **Possible discovery for > 10 fb**
	- **Uncertainties are large (~30%)**
- Finding the Higgs requires excellent understanding of the detector: extensive work needed to understand the detector as soon as the first data will become available
	- $\mathcal{L}_{\mathcal{A}}$ • LAr calorimeter: γenergy calibration, γ direction reconstruction, γ/jet separatior
	- $\mathcal{L}_{\mathcal{A}}$ • Inner detector: Primary vertex reconstruction, Conversion reconstruction, γ isolatior

(III) Adressing experimental issues

Study of the tails is important to understand reco problems.

Example on 120 GeV low luminosity

- Low energy tail $(M_h^{\text{rec}} < M_H 5 \text{ GeV})$: 48 events
	- \bullet 87 % are events with converted photons:
		- [∼] 50 % of these events one conversion is not reconstructed
		- ~ 50 % one early conversion (R_c < 40cm)
- High energy tails $(M_h^{\text{rec}} > M_H 5 \text{ GeV})$: 16 events
	- • 70 % events with bad reconstructed vertex. Mainly both photons in the endcap.
- • Main problems: handling converted photons and direction reconstruction in the endcap: items to be considered carefully

BACKUP SLIDES

Irreducible background:

H→γγ: conversion reconstruction

 $~\sim$ 40 % of H →γγ events will have at least one converted photon:

• Fraction of converted photons in the fiducial region R_{c} < 80 cm and $|\mathsf{z}|$ <280 cm

 \Box TDR: track based conversion reconstruction algorithm optimized for R_c<80cm

 \Box Overall efficiency ~80% almost flat in R_c (up to 80 cm), η and P₁

Δ Resolution on the reconstructed Z vertex : σ _z = 0.3 mm for R_c<20 cm and σ _z=5.3 mm for 20 $<$ R $_{\rm C}$ $<$ 40)

□ DC1: vertexing algorithm for conversion reconstruction implemented into Athena but not optimized (G. Gorfine). In the analysis TDR efficiencies have been used.

Q Rome: preliminary results obtained for $R_c < 20$ cm conversions (D . Joffe) (~80% for 100 GeV photons).

Need to asses a track reconstruction strategy and optimal cuts for conversions especially at high radii as was done in the TDR

H→γγ: primary vertex reconstruction

Impact of primary vertex reconstruction on the mass resolution (DC1) no pileup and no const term smearing

• Primary vertex provided by Inner Detector with a resolution of 40 μ m

• The photons direction can be measured from em-calo standalone leading to a Z vertex resolution of

- •TDR ~ 1.33 cm •DC1 ∼ 1.67 cm 1.67 cm
- •Rome ~ **1.94 cm**
- DC1/Rome: non optimal η corrections
- Conversion vertex can be used in the direction fit to improve the resolution

Conversion vertex in the direction fit

Analysis cuts and reconstruction:

- •Events with 1 γ in the electromagnetic calorimeter cracks excluded (bad energy resolution):
	- $|\eta|$ <0.05, 1.4< $|\eta|$ <1.55 and $|\eta|$ >2.45
- Transverse momentum cuts (background rejection)
	- $p_{T}(1)$ >40 GeV, $p_{T}(2)$ >25 GeV
- 0.7% constant term to the photons reconstructed energies added (mechanics, calibration, HV variations…not included in the detector simulations)
- • Conversions found from MC taking into account 80 % efficiency (flat in eta and p_T)
- \bullet Different cluster size for converted (3x7) and unconverted photons (3x5):
- • The direction of both photons is corrected for the primary vertex position using a weighted least squares fit and a simple GEANT 3 parametrization of the shower depth

Full simulation details: mass resolution contributions

The various contribution to the Higgs mass have been estimated: example reported for the high luminosity case

$$
\frac{\sigma_m}{m} = \frac{1}{2} \left(\frac{\sigma_{E_1}^2}{E_1^2} + \frac{\sigma_{E_2}^2}{E_2^2} + \frac{\sigma_{\alpha}^2}{\tan^2(\alpha/2)} \right)
$$
 Continuous to the Higgs invariant mass

Contributions to the calorimeter resolution

$$
\sum_{E} \frac{\sigma_E}{E} = 0.7\% \oplus \frac{10\%}{\sqrt{E}} \oplus \frac{300 MeV}{E}
$$

Higgs physics: what do we know?

 $\Box m_{\rm H}$ > 114.4 GeV from LEP @ 95% confidence level \Box m_H < 1 TeV from theoretical contraints (unitarity) □Global fit to ElectroWeak data:

 \square Summer 2003 : M_{top}=174.3 ± 5.1 GeV/c² so that M $_{\rm H}$ <219 GeV/c 2 \square <u>Winter 2005</u> : M_{top}=178.0 \pm 4.3 GeV/c² so that M $_{\rm H}$ <280 GeV/c 2 \square Summer 2005 : M_{top}=172.7 ± 2.9 GeV/c² so that $\mathsf{M}_{\mathsf{H}}{\leq}2$ 19 GeV/c 2

Anyway, current indications are for a 'light Higgs' : search for Higgs in mass region 114 < m_H < 200 GeV very important

SM Higgs production and decay:

- •H \rightarrow γγ is a rare decay mode with BR ~ 10⁻³ $(2.186 \ 10^{-3} \text{ for } M_{H} = 120 \text{ GeV})$
- • The signal should be visible as a peak above the γγ continuum background
- • Severe requirements on particle identification capabilities of the detector
- Dominant production process is the gluongluon fusion (LO ~20 pb for M_H=120 Ge\ $K = 1.9$
- Vector Boson Fusion contribution becomes important for higher M_H (but <u>distinctive</u> <u>signature!!</u>) (LO ~4 pb for M_H=120 GeV $K = 1.06$

Small contribution from WH,ZH and

DC1 data: a bricolage approach to the 'as built detector'

■ Study performed on M_H=120 GeV sample (no noise and no pileup): the HV problems simulated at the reconstruction stage.

- an
Ma Up to now only 2 (endcap) fully dead sectors have been observed at cold
- an
M Not dramatic: from our simulation 2-3% loss in significance for up to 6 fully dead HV sectors

Leonardo Carminati Physics at LHC 2006 32

Milano

(I) What we knew @ the TDR time about the channel

□ Signal: Use of LO cross-sections for signal PYTHIA 5.7 (with CTEQ2L) and GEANT 3 - Atrecon based analysis \Box σ x BR ~50 fb for M_H=120 GeV

 \Box Acceptance of kinematical cut \sim 50 %

I Irreducible γγ background (not in full simulation)

 \Box Born (LO) + Box (higher order but enhanced by structure functions) Some estimate of 'bremstrahlung' contribution Born+Box [∼]0.7 pb/GeV before kinematical cuts (~10% acc) and photon efficiency

(~2 x 80%) for M_H =120 GeV + quark bremsstrahlung (∼ 50% of the Born+box).

Δ Reducible background from jet-jet and γ-jet events in which one or both jets are misidentified as photons from full simulation: Reducible / irreducible cross section ~2x10⁶(jj) 8x10²(γj) with large uncertainties

Excellent jet rejection factor ([∼]103) for 80% γ efficiency required : after all cuts the reducible background ~20% of the irreducible

(I) What we knew ω the TDR time about the channel

- \blacksquare 100 fb⁻¹ collected in high luminosity conditions (10 34 cm⁻² s⁻¹)
- \blacksquare 30 fb-1 collected in low luminosity conditions (10 33 cm⁻²s⁻¹)
- \mathbb{Z} Associated production (HW, HZ and Httbar) analysis: \sim 4 σ achieved with 100 fb $^{-1}$ of integrated luminosity. This analysis has not been updated yet.
- \blacksquare H+Jet(s): no definite conclusion in TDR because of lack of full NLOcomputations

(III) DC1 inclusive analysis: DC1 results

- • Direct TDR/DC1 comparison of significance with same cross-sections (LO)
	- Naïve estimation of significance = $N_S/\sqrt{N_B}$ in 1.4 σ mass bin
	- – Slight degradation (< 10%) in the new detector layout mostly due to worse Higgs mass resolution

(III) DC1 inclusive analysis: results (LO)

• Re-evaluation of signal significance with state of the art LO cross-sections, branching ratios and DC1 resolution

New LO cross sections for signal and background (PITHYA 6.224 and CTEQ6L1)

Q Photon identification cuts have been applied

 \Box Irreducible background a' la TDR

Q Reducible background reevaluated

Leonardo Carminati