R-hadrons at ATLAS Discovery and Properties

Marianne Johansen Stockholm University

Outline

- Stable Massive Particles
- Gluino R-hadrons
- R-hadron interactions
- Experimental signatures
- R-hadrons at ATLAS
- Conclusion

Is there anything beyond the Standard Model?

Stable Massive Particles

Metastable -can traverse detectors without decaying, but not a dark matter candidate.

Commonly studied SUSY scenarios:

Particle	Scenario	Color	
Gluino	Split-SUSY	8	1
Stop	SUSY 5D	2	> R-hadrons
	G-MSB	3	J
Chargino	AMSB	0	
Stau	GMSB	0	

also RPV SUSY, UED, leptoquarks, exotic quarks...

Identification of SMPs important tool in exotic program, nondiscovery (almost) equally important in model discrimination

Gluino R-hadrons

- Studies done at ATLAS are all within the Split-SUSY scenario
- Split-SUSY -hierarchy problem abandonded, allows for SUSY-breaking at some high scale, can lead to heavy scalars and light fermions.
- Large cross section for gluino R-hadrons, for m=1 TeV, 1500 events ~ 1fb⁻¹
- Gluino R-hadron mass splittings available T.Sjöstrand et al. (hep-ph/0603175).

R-hadron interactions

Heavy constituent is a non-interacting spectator. Light constituents interact like ordinary hadrons
 interaction models
 very uncertain. Kraan(hep-ex/0404001), Mafi, Raby (hep-ph/9912436), Baer, Cheung, Gunion(hep-ph/9806361)

 Expected energy loss; tens of GeV, collision length -10 cm.

Experimental signatures

- Measured as delayed muon, timing resolution ~1ns
- Triggered as a high-pT muon
- Charge flippers

$$\tilde{g}d\overline{d} + uud \rightarrow \tilde{g}u\overline{d} + uud$$

- Larger hadronic energy deposit than muons
- R-mesons convert to R-baryons

$$\tilde{g}d\overline{d} + uud \rightarrow \tilde{g}udd + u\overline{d}$$

R-hadrons at ATLAS

- **First search**, global variables, transverse momentum in the muon system, missing transverse energy, total energy and thrust.
- An excess $> 5\sigma$ can be found by cutting on these variables (Kraan, Hansen, Nevski, hep-ex/0511014)

Results from global cuts

Background	$\frac{N_{trig}}{N_{gen}}$ (%)	σ (mb)	$N_{trig}(1 { m fb}^{-1})$	$N_{sel}(1\text{fb}^{-1})$
QCD $\hat{p}_T < 17 \text{GeV}/c^2$	-	4.8×10^{3}	-	-
QCD $17 \text{GeV}/c^2 < \hat{p}_T < 35 \text{GeV}/c^2$	0.04	1.4	6.0×10^{8}	-
QCD $35 \text{GeV}/c^2 < \hat{p}_T < 140 \text{GeV}/c^2$	0.05	9.9×10^{-2}	5.2×10^{7}	-
QCD $140 \text{GeV}/c^2 < \hat{p}_T < 560 \text{GeV}/c^2$	0.8	3.2×10^{-4}	2.7×10^{6}	24
QCD $\hat{p}_T > 560 \text{GeV}/c^2$	97.7	6.6×10^{-7}	5.5×10^{5}	168
bb $\hat{p}_T < 35 \text{GeV}/c^2$	0.1	4.8×10^{-1}	4.9×10^{8}	-
bb $35 \text{GeV}/c^2 < \hat{p}_T < 140 \text{GeV}/c^2$	0.6	3.8×10^{-4}	2.3×10^{6}	-
$b\bar{b} 140 \text{GeV}/c^2 < \hat{p}_T < 560 \text{GeV}/c^2$	4.4	1.1×10^{-6}	5.1×10^{4}	4
$p_T > 560 \mathrm{GeV}/c^2$	98.9	9.8×10^{-10}	9.7×10^{2}	10
$t\bar{t}$	29.8	4.9×10^{-7}	1.5×10^{5}	187
W	7.2	1.6×10^{-4}	1.1×10^{7}	47
Z	0.88	6.0×10^{-4}	5.3×10^{6}	4
diboson	6.2	2.5×10^{-6}	1.6×10^{5}	14
R-hadrons M=100 GeV/ c^2	45.0	5.6×10^{-5}	2.5×10^{7}	393k
R-hadrons M=300 GeV/ c^2	70.0	2.8×10^{-7}	1.97×10^{5}	54k
R-hadrons M=600 GeV/ c^2	60.0	5.2×10^{-9}	3.1×10^{3}	1.2k

Charge flipping

- Strategy for detecting and identifying gluino R-hadrons Hellman, Milstead, Ramstedt (ATL-PHYS-PUB-2006-005)
- Three different selection criteria:
 - 1. Opposite charge tracks in Inner Detector (ID) and Muon System
 - 2. Two same sign, high pT-tracks in Muon System
 - 3. Two same sign, high pT-tracks in Muon System, and explicitly no tracks in ID.
- Selection criteria has a good discrimination rate up to gluino masses of 1 TeV → a pure R-hadron sample can be extracted

Results from selection criteria 1.

Sou	irce	Number of tracks passed	
		Scaled to 2fb ⁻¹	
Signal	300	21,598	
Gluino mass	500	1,742	
(GeV/c^2)	1000	16	
Background	QCD	11	
$p_T > 150 \text{ GeV}$	$b ar{b}$	4.0	
	$t \overline{t}$	0.9	
	W, Z, diboson	1.1	
	total	17	
Background	QCD	0.6	
$p_T > 350 \text{ GeV}$	$b ar{b}$	0.7	
	$t ar{t}$	0	
	$W, Z, { m diboson}$	0.33	
	total	1.6	

Charge of ID tracks is negative!

Mass determination

• Time-Of-Flight method, using Moore fits, (Polesello, Rimoldi ATL-MUON-99-006) used for mass determination.

 Masses can be determined up to an accuracy of a few

percent. (Hellman, Johansen, Milstead ATL-PHYS-PUB-2006-01)

Mass determination

Conclusion

- SMPs are predicted in many scenarios of new physics
- Large cross-sections and distinct signatures for gluino R-hadrons allows for early discovery at LHC.
- Search strategies and mass resolution studied at ATLAS