

Scenarios for long term analysis (Summary)

Stephen Wolbers Fermilab

Workshop on Data Preservation and Long Term Analysis in HEP

DESY, January 26-28, 2009

Outline

- General Comments
- Scenarios for long-term analysis
 - Experiment (completed, running, future)
 - Joint experiment (ee, ep, pp)
 - HEP wide
 - public
- · Custodianship issues
 - Code, environment, expertise, etc.
 - Data Center Considerations
- Examples to learn from
 - Astronomy
 - Other science data preservation

January 28, 2009 Stephen Wolbers 2

Some comments

- I am new to this discussion, hence the slightly unforcussed nature of this summary
- To a large extent experiments have analyzed data for as long as they had the effort and expertise to do so.
- Once the effort and expertise was "below threshold" then outside factors had an impact:
 - Tapes were thrown away or lost or unreadable.
 - Code was lost (kept in home areas, backup tapes were lost, etc.)
 - Documentation was incomplete or was only known by experts
 - Operating systems changed and code broke
 - Data handling mechanisms stopped working
- By and large these barriers were overcome by an experiment with strong motivation to continue analysis
 - This was usually done on a case-by-case basis

General considerations (1)

- Are we too late?
 - For many experiments (thinking of a much broader selection than the subset considered here): yes
 - Old bubble chamber film gone
 - Old tapes gone or unreadable for a large number of experiments
 - Software and expertise long gone
 - For the experiments considered at this workshop:
 - · Worth investigating and understanding
 - · Bring the entire community up to speed
 - Not just the experts who are thinking about this issue
 - A proposed split:
 - Completed experiments
 - Running experiments
- Future experiments
 Stephen Wolbers

General considerations (2)

- Why preserve data and analysis capability?
 - Physics case must be made:
 - · Necessary but not sufficient
 - · Wishful thinking is not good enough
 - May require a real shift of resources or a choice between this and some other activity
 - Not just for scientists but also for computing professionals and computing resources
- Why hasn't it been done in the past?
 - Probably doesn't matter but it would be nice to understand as people think about future options
- · What are the use cases?
 - Specific analyses
 - Speculative or other analysis of "unique" data
 - Follow-up or contribution to future discoveries or measurements
 - In the end these need to be defined to make progress

Completed Experiments

- Need to define the requirements or goals
- Define more clearly what is required for data preservation
 - Starting with the definition and goals of the term "data preservation"
- · Many issues:
 - Data samples need to be defined
 - Code and calibration and related information
 - Documentation!
 - Expertise
 - Timescale for analysis (few years, forever?)
 - · Time until a follow-on experiment
 - Effort estimates (very important)
 - Different experiments may have different requirements, these should be documented

Completed Experiments (2)

- Authorship and collaboration ownership of the data
 - Experiments typically run with some sort of collaborative agreement and management board
 - The issue of how to handle analysis results coming from these experiments must be defined and approved
 - Define the "end" of the collaboration responsibility and restrictions
 - · Fixed time-frame
 - Tied to data or physics topics
 - Forever
- · We heard some ideas from HERA, LEP, others
 - Need to expand to other interested experiments
 - The criteria for who to include needs to be worked out

Running Experiments

- Mainly focus on Tevatron at this meeting
- · Same issues as completed experiments except:
 - Expertise is by and large still in place
 - Effort is (potentially) available to prepare for a number of possibilities:
 - Analysis for the collaboration for a targeted number of years
 - Migration of the analysis and data for longer period of time
 - Ntuple preparation for potentially very long-term analysis
 - Preparation of standard format of data
 - · Combined analysis
- · Include other experiments as appropriate

Documentation is not just information about the data and data analysis

- Documentation
 - The experimental apparatus
 - The beam and beam conditions
 - Experiment performance and issues important for physics analysis
 - Many internal notes how are they going to be kept?
 - Information on user's home directories
 - Wiped out when people leave in many cases
 - Backup tapes are short-lived
- Place to store the information
 - INSPIRE, the equivalent, national/international repositories
 - Need to decide
 - Can provide location and links for much of the above

Future Experiments

- Likely to be the most important case, or at least the one with the greatest opportunity to do something planned and new
- One can imagine the proposal, funding and approval process integrating the long-term data access and preservation component
 - Best time to organize the thinking
 - Make commitments
 - Acquire funding and effort
 - Make decisions that are consistent with the requirements
 - Need a threshold for the process:
 - All experiments
 - · Large experiments
- Opportunity to lay out a plan

LHC and others

- · LHC experiments are not discussed at this time
- Hard to ignore such a huge community and data sample, at least in planning
- Many other experiments are taking data or will take data soon
- It is understood that taking on too much at once may diffuse effort and cause this process to diverge
 - But the question will likely come up
 - Should be addressed

HEP-wide Access

- Does it make sense?
- Physics is invariant
- Combinations of experiments are critical for the best physics
 - Done in a pretty ad-hoc way
 - HFAG, CTEQ, LEP working groups, etc.
- · Some ideas were heard
 - Quearo or some common data representation
 - Ntuples
 - INSPIRE and links available
 - Other

Joint or combined analysis

- · Important consideration
- Need to understand how much is required and beneficial
- Make commitments for access to:
 - Distributions
 - Ntuples
 - Event-by-event data
 - Common data formats

Federation of data

- Can HEP make available detailed information from many experiments?
- · Requirements:
 - Common format (is this possible?)
 - Storage standards
 - Object standards
 - Place to store data
 - Mechanism for serving data
 - Funding mechanism
 - Support
 - Standards for interoperability
 - Management and oversight

Public Access

- · Interesting and important issue
- · What does it mean? Need to define.
 - Ntuples
 - Web interface with tools
 - Standard data format
 - Each experiment individually
 - All experiments
- Publishable results?
 - Publication process
 - No internal review
 - Referee?
- · Authorship and responsibilities

Custodianship

- Responsibility for code, associated information needed to analyze, and the expertise needs to be defined in some way.
 - Could be open source
 - Kept in a data center
 - INSPIRE protected by access rights
 - Other
- · Expertise
 - Collaboration-owned?
 - Released to world (documentation)
 - Funded by agencies in a formal way
 - Other

Data Custodianship

- Data centers or the equivalent can be defined to be data custodians
- Long-term data custodian
 - Data preservation agreement with the experiments and other internal and external entities
 - Disaster planning and recovery
 - Duplicate data when necessary
 - Data migration to higher density media automatically
 - This should all be spelled out and not left to chance
- Long-term data access issues
 - Data format
 - File structure
 - Methods for access to data
- Budget taking care of data is not free!

Examples to learn from

- · Astronomy
- Data Archive is used for analysis and for public access
- Formal standard FITS format (1977)
- · Planning from the start to make data available
- International projects to keep the data
- Reprocessing is done just after the data is taken
- More should be done to understand what was done and how it might apply
- Not perfect but interesting

Other science preservation

- · Clearly people are interested in maximizing the physics capability of the experiments
- Funding agencies and governments would like to ensure that information is not lost
- We need to follow what is happening and participate as appropriate

January 28, 2009 Stephen Wolbers 19

Conclusion

- Everyone agrees that data and analysis preservation is desirable
- Need to understand what is involved in many areas
- Not free, in some cases may not even be possible
- The press of new efforts and budget cuts tend to push this activity away
- Suitability for this work in HEP (students, postdocs, others) has to be understood
- It was a stimulating discussion and an enjoyable workshop!