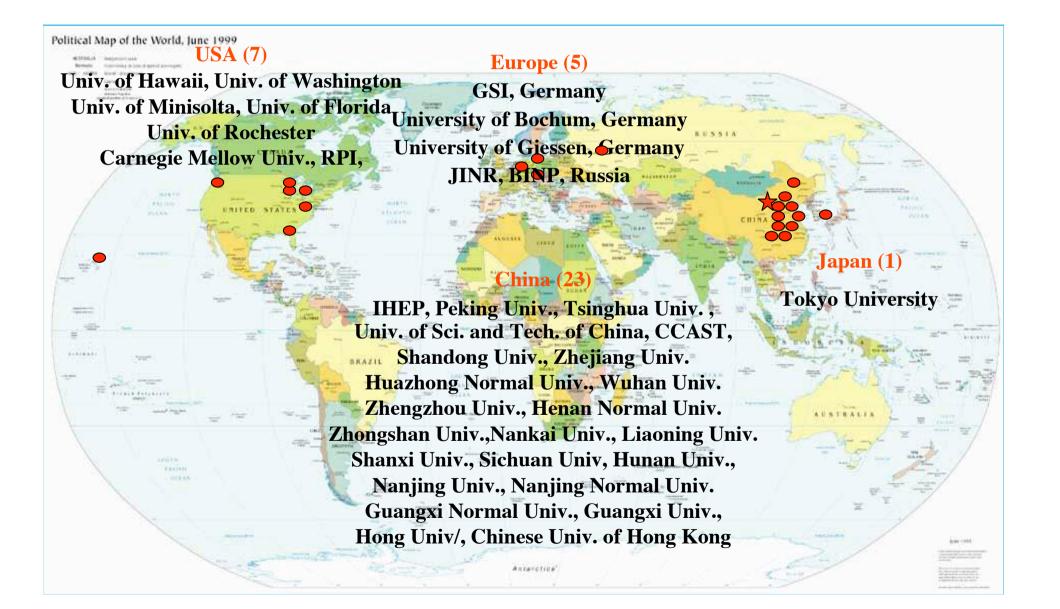
BES-III Computing Model

First Workshop on Data Preservation and Long Term Analysis in HEP

Introduction to IHEP


Comprehensive and largest research center in China for Particle physics, Accelerator, Synchrotron radiation technologies, with wide range of scientific program.

1000 employees, ~ 650 physicists and engineers, 300 PhD Students and post-doctors Established at 1950, and became an independent institute at 1973.

BEPCII/BESIII

- **BEPCII/BESIII** is one of particle physics experiments.
- BEPCII luminosity 10³³ cm⁻²s⁻¹at 1.89 GeV, as well as major upgrade of BES, can insure an important roll in world HEP, especially in charm physics.
- Research topics of BESIII on BEPCII:
 - -Precision measurement of CKM matrix elements
 - Precision test of Standard Model
 - QCD and hadron production
 - Light hadron spectroscopy
 - Charmonium physics
 - Search for new physics/new particles

BESIII collaboration

Estimation of BESIII Data Volume

- Event rate is about 3000 Hz with 12KB raw event size.
- BESIII will be running on Jpsi for one year and on other particles for 4 years.
- Raw Data will be recorded to tape library at Computing Center with 36MB/s in full luminosity.

Volumes of Various types of Data

Data type	Size(TB)	Media
Raw	480+480 (backup)	Tape lib.
Rec.	2880 (twics/year)	Tape lib.
DST	80	Disk
MC-raw	480	Tape lib
MC-rec	1440 (once/year)	Tape lib
MC-DST	80	disk
Disk cache	400	disk
Total	5760TB (tape) + 560TB (disk)	Tape+disk

Requirement of Computing power

Type of Computing	Number of Events	KSpecInt2K
Rec.	2x10^10	964
MC-rec.	2x10^10	350
Analysis	2x10^10	500
Total	6x10^10	1810

It approximately is equal to 2000 Xeon 3.00 GHz CPUs, we estimate that CPU Utilization is 90%.

Offline Software Environment

- Underlying framework
 - GAUDI (originally developed by LHCb)
- Simulation
 - GEANT4
- Other external LIBs:
 - CERNLIB, CLHEP, ROOT, AIDA, XercesC, GDML ...
- Database: MySQL
- Software configuration management
 - CMT and CVS
- Computer language: C++ for simulation/reconstruction/ analysis and Java for web application
- Operation system and compiler:
 - SLC4/gcc3.4.6

Analysis within the Collaboration (1)

- Working groups
 - Physics groups are organized by the major physics topics
 - Charm Group, Charmonium Group, Light Hadron Spectrocopy Group, Tau and QCD Group
 - Offline Software Group
 - Responsible for the core software framework, simulation and reconstruction algorithms and various tools needed by physics analysis
 - Calibration Group
 - To provide calibration algorithms and maintain calibration constants in the database
 - Data Production Group
 - ➢ Responsible for real data processing and MC data production
 - Data Quality and Monitoring Group
 - Responsible for software validation and monitoring detector performance at online/offline level
 - Computing Group
 - Maintain the computing facilities such as computer farms, network, tape library, disks etc.

Analysis within the Collaboration (2)

- Real data processing and MC data production
 - Real data and shared MC data are processed using the standard software release and configuration at IHEP.
- Analysis activities outside IHEP
 - Collaborators outside IHEP form different small physics groups using their own computing facilities.
 - Subsets of DST data are copied to sites outside IHEP.
 - MC production can also be done outside IHEP by setting up the identical computing environment.
 - Produced data at other sites can be sent back to IHEP for public use.

Data Analysis Model (1)

- Event Data
 - RAW data: delivered by DAQ for reconstruction in byte stream format
 - Simulated Event Data: contain digits, hits and other MC truth information in ROOT format.
 - REC data : reconstructed data is event data written as output of reconstruction procedure in ROOT format.
 - DST Data: a reduced event representation suitable for analysis in ROOT format.
- Software releases
 - 2-4 major releases each year
 - When a new release is published, lot of checking will be done for validation using both MC and real data.
 - Release information like package tag version are stored in the database.

Data Analysis Model (2)

- Monte Carlo simulation strategy
 - Software: detector simulation is based on Geant4 and piling-up of random trigger event as the background
 - MC mass production: Data Production Group is responsible for producing MC data for common use.
- Storage and access
 - Size of current real event: 17 KB for raw, 35 KB for REC and 5 KB for DST (noise and background level is still high now)
 - Size of MC event: 8 KB for raw, 40 KB for REC and 13 KB for DST
 - All the data are copied to disk for processing or physics analysis
 - During the mass production, the information about job and processing history are recorded in a book-keeping system.

Data Conservation Prospects

- Current extent of data conservation at your experiment
- Which data should be conserved
 - Data about the experimental conditions and various parameters like calibration constants, detector geometry data etc
 - Event data (MC and real)
- At what level should data be conserved (raw, analysis level)
 - Raw data and DST data should be conserved when the experiment system becomes stable.
- Anticipated software headaches
 - The maintenance and improvement of software is a headache for being lack of man power.
- Timescale for readiness of preserved data
- Planned lifespan of preserved data (10, 20 years..)
 - About 15 years
- Where will the data / software be physically stored
 - Data in disk/tape and software source code in CVS at IHEP
 - Data and software releases in disk at other sites

Collaboration prospects

- Planned end-date of your experiment
 - In about 10 years
- Expected scientific output (papers)
 - 20-30 papers each year
- Person power evolution in the next years
 - more than 100 persons, not exactly.
- Long term collaboration life/organisation
 - 10~15years
- Plans for open access
 - no plan in its life time.
- ...

Thanks!