

A multi-purpose computing center: FNAL

Stephen Wolbers Fermilab/CD/Scientific Facilities & CDF Workshop on Data Preservation and Long Term Analysis in HEP DESY, January 26–28, 2009

Outline

- Description of Fermilab Computing Center(s)
 - Facilities
 - Services
 - User communities
- Scientific Data
 - Components and architecture
 - Scientific Data Storage
 - Data Center Responsibilities
- Open Issues

- The scope and focus of this talk is the Fermilab Computing Facility.
- Not covered, or at least not covered well, are issues such as:
 - Data GRIDs
 - Cloud computing and storage
 - Commercial storage (Amazon S3, Google, others)
 - Data integrity, authorization, access rates
 - Novel data storage technologies
 - Holographic storage
 - Solid state disks
 - Disk farms as archival storage

Description of Fermilab Computing Center(s) - Facilities

- Three buildings, ~11 rooms, UPS, generator
 - Does not include accelerator, detector, some small computing rooms elsewhere on site.

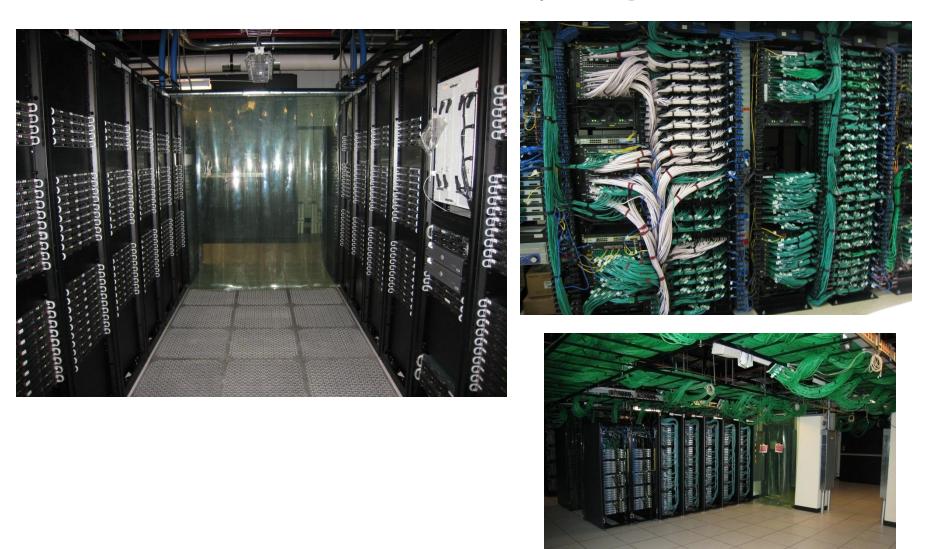
Facilities: Feynman Computing Center

- Feynman Computing Center (FCC)
 - 3 rooms
 - 19000 ft² (1765 m²)
 - ~700 kW UPS
 - 1.5 MW Diesel Generator
 - Uptime 99.99% (Tier 1 Data Center)
- FCC Home for:
 - Servers that require high availability
 - Part of the robotic storage (9 data robots + 1 central file backup system)
 - Web, email, backup, business systems
 - Networking
 - Many miscellaneous servers and computing systems.

Facilities: Feynman Computing Center

January 26, 2009

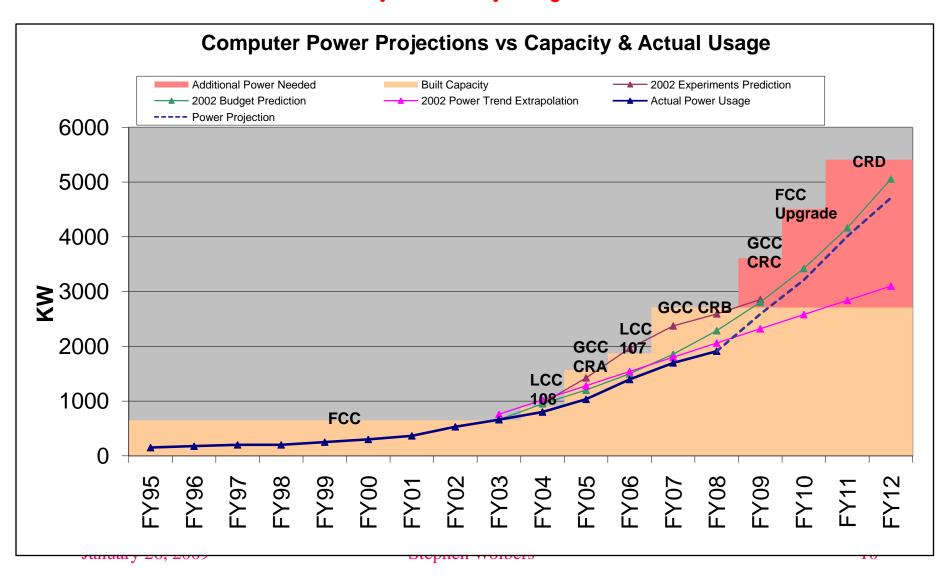
Stephen Wolbers



Facilities: Grid Computing Center

- Grid Computing Center (GCC)
 - 6 rooms
 - 10388 ft² (965 m²)
 - ~1 MW UPS (constantly growing)
 - Generators can be connected for planned outages.
 - Uptime 99.78%. No permanent generator backup in place at this time.
- GCC Home for:
 - Robotic Storage (3 data robots)
 - Compute Farms (Run 2, CMS, FermiGrid)
 - Lattice QCD and high performance computing
 - Volatile disk cache
 - Networking

Facilities: Grid Computing Center


Stephen Wolbers

Facilities : LCC, the Future

- Lattice Computing Center (LCC)
 - 2 rooms
 - 4500 ft² (418 m²)
 - 500 kW
 - No UPS, no generator
 - First few generations of Lattice QCD PC clusters
- Future Facilities & Upgrades
 - Upgrade to FCC for high availability computing
 - Upgrades/additions to GCC
 - UPS/Generators for GCC
 - Additional power, space and cooling driven by the needs of the program and the ability to get funding
 - Constant need! Working hard to increase and improve the facilities.

Scientific Computing at Fermilab power use history and projections

Types of data and services housed in the facilities

- Business Services
 - Professionally managed, including off-site storage, disaster recovery, etc.
- Core Scientific and Laboratory Services
 - email
 - Web services
 - Networking
 - Home areas
 - file servers
 - CVS repositories

Approximately 1 Pbyte 1 year retention TiBS backup system

- Windows servers
- Scientific Computing Facilities
 - The main thrust of this talk
- Databases

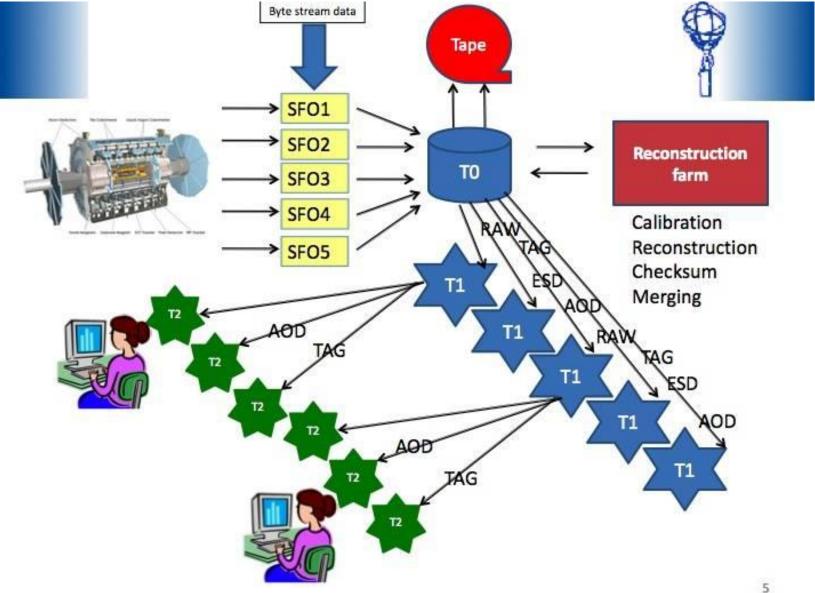
14 Pbyte
Managed by Enstore

User Communities (not an exhaustive list)

- The Computing Division
- The Laboratory
- Run 2: CDF and DO
- CMS Tier 1 and LPC centers
- Neutrino Program
 - MINOS, miniBooNE, NOVA, Minerva
 - SciBooNE, other small neutrino efforts
- HEP experiments analyzing data (KTeV, Selex, Focus, ...)
- Sloan Digital Sky Survey
- DES + other Astrophysics including JDEM
- Lattice QCD
- Accelerator Simulation
- Test Beam Experiments
- Cosmological Computing Simulations Initiative
- · ILC
- Project X
- Mu2e
- Theory

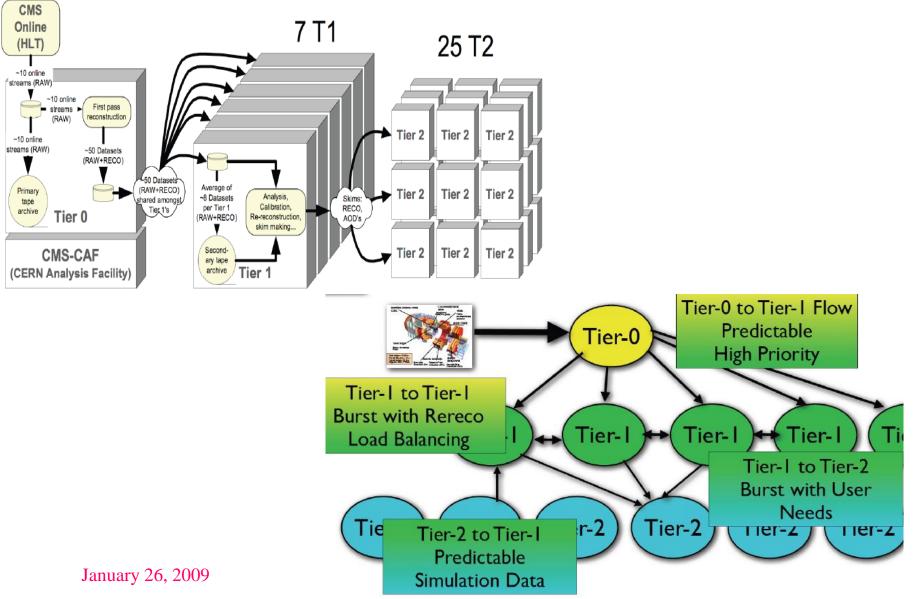
Scientific Data

Scientific Data: Components


- Experimental data ("Raw")
- Derived datasets
 - Output of production
 - Selected datasets
 - "Ntuples"
- Simulated Data
- Metadata
- Databases
- Code
- Calibrations
- Other

Scientific Data Architecture

- The basic architecture:
 - Applications
 - Interfaces and middleware
 - Grid and data handling systems
 - Disk or other cache storage
 - Mass storage
 - Calibrations and databases
- All of this must function properly for the experiment to collect and analyze data
- Long term analysis likely uses a subset or even a highly modified architecture or model


ATLAS (borrowed from Jim Shank)

16

CMS Data Flow

Scientific Data: Archiving Evolution and examples

Scientific Data - I pre-collider Run 2 (prior to 2000)

- Mix of fixed-target and collider experiments
- Huge amounts of data compared to the economical capability for robotic storage and management
- Emphasis on writing the maximum amount of data to any storage for offline analysis
 - Driven by the physics needs
 - Commodity tapedrives and media (8mm, DLT)
 - Large effort to manage unreliable devices
 - Consequences of minimal data loss:
 - > Small change to results
 - > Run experiments longer

> Exploit the next generation of experiments Stephen Wolbers

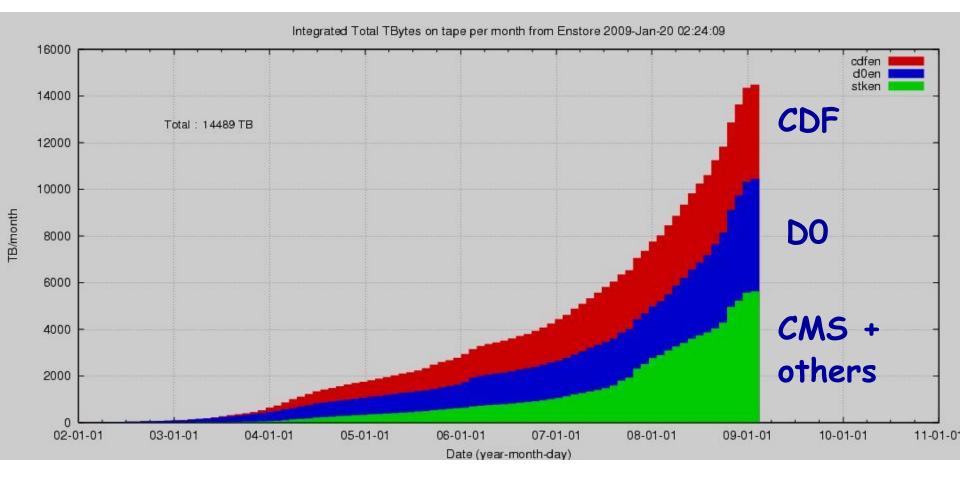
Scientific Data - I

Scientific Data - I

- > 500,000 volumes of media (non robotic)
- CD responsible for tape management, storage in tape vaults and off-site and access
- Experiments responsible for any necessary duplicates, derived datasets, internal data structure
 - CD provides and supports tools
- CD + experiments responsible for methods and software for data access, long-term storage, migration
- Best described as ad-hoc but effective and appropriate
 - It worked

Scientific Data – II Run 2 era

- Run 2 Era also robotic storage era at Fermilab
 - Earlier robotic storage was too limited for all of Fermilab's data
 - Limited to special datasets, especially those with a high frequency of access
- Run 2, robotic storage was planned for and grew to encompass all Run 2 data as well as all data from "small" experiments
 - This eventually included, MINOS, miniBooNE, SDSS, KTeV, parts of other experiments and projects


Scientific Data - II

Integrated Mass Storage Since 2002

Scientific Data - II

- Commitment to Run 2 Data Storage:
 - Long-term rapid access for production and analysis
 - "Low" data loss mainly from tape damage
 - Data management (SAM, GRID)
 - Data access and mass storage software (dcache, SAM, Enstore)
- Timescale
 - The complete data taking period:
 - · 2001-2010+
 - And some period for Run 2 analysis
 - Yet to be defined, but expected to last years beyond the end of data-taking

Scientific Data - III (Sloan Digitial Sky Survey)

- Sloan Digital Sky Survey (SDSS)
- Different from the standard HEP experiment.
- Covered by formal agreements with ARC (Astrophysical Research Consortium)
- Data taken on the mountain was copied and maintained in multiple locations (on tape).
 - Has since been copied into Enstore mass storage
- Formal data releases (DR1, DR2, ...)
- Final data release (DR7):
 - http://arxiv.org/abs/0812.0649
 - Multiple mirrored copies.
 - Long-term commitment to serve and preserve the releases (5 years)
 - Fermilab + at least two other sites are hosts for the data

January 26, 2009

Scientific Data – IV LHC era

- Fermilab is a Tier 1 and LHC Physics Center (LPC) CMS computing center
- There are certain responsibilities that go along with this in terms of data access and archiving
- Some of these responsibilities are spelled out in MOU's and other documents
- In addition to CMS, the Run 2, neutrino, Lattice, Astrophysics and other communities all use the shared mass storage and related facilities
 - In reality, Run 2 will dominate for a few years

Scientific Data - IV

LHC era (for all experiments and projects)

- Scientific Data and File backups are now completely robotic
- Migration is in place to copy all data to higher density technologies as newer densities become available
 - No shelved tapes ever (one hopes)
 - Access "forever"
- This simplifies the issues of what to do with older data but adds some to the cost and operational complexity of the systems.
- A data policy is being developed to understand:
 - Data loss and risk analysis
 - Geographical placement/dispersal of data sets
 - Uniform framework for scientific data management

Data Center Responsibilities

- Long-term data custodian
 - Data preservation agreement with the experiments and other internal and external entities
 - Disaster planning and recovery
 - Risk analysis and preparation
 - Agency/regulation requirements
 - Minimize data loss and ensure efforts at data recovery whenever appropriate
 - Duplicate data when necessary
 - Data migration to higher density media automatically
- Long-term data access
 - Data format
 - File structure
 - Methods for access to data

Open Issues

- Lifetime of agreements and data preservation requirements
- Software and access method support over long periods of time
- Data format, metadata, file size, hardware and software migration over long time frames
- Experiment requirements
- Laboratory requirements
- What is right or desirable for the field, for the public
- Support load and the ability to provide the support over long periods
- New technologies for data storage and access
- GRID computing
- Cloud Computing
- Beyond LHC, international laboratories

Open Issues

• Access to data:

- Experiment only
- Other closely related experiments (CDF/D0, MINOS/NOVA)
- Others affiliated with the same laboratory
- Similar physics topics
- All HEP
- Public
- Data access methods and delivery rates
- Data integrity, security, and checks
- Instructions and Documentation
- Agreements and policies
- Custodians libraries, SPIRES, Google?