7th RD50 Workshop on Radiation hard semiconductor devices for very high luminosity colliders, CERN, Switzerland, 14-16 November 2005

An annealing study on 23 GeV proton irradiated n-type MCz pad detectors

Michael Moll⁽¹⁾, Alison G.Bates⁽²⁾ and Jens Schmaler⁽³⁾

⁽¹⁾ CERN- PH-DT2 - Geneva – Switzerland
 ⁽²⁾ University of Glasgow – Glasgow - UK
 ⁽³⁾ Technische Universität München – Munich - Germany

Outline: • Material, Irradiation and Measurements

- Leakage Current, depletion voltage and trapping times
- Annealing experiments at different temperatures
- Preliminary conclusion (analysis ongoing)

RD50 Experimental procedure

Samples and Irradiation

- MCZ silicon produced by Okmetric Oyj
 - 1 K Ω cm, n-type, <100>, [O] = 4.9×10¹⁷cm⁻³ (IR, B.Surma, ITME)
- Pad detectors produced by Helsinki Institute of Physics
 - d ~ 304 μ m, A=0.25 cm², V_{fd} ~ 310 V
 - Many thanks to Jaakko Haerkoenen and the HIP group
- Irradiation performed at CERN with 24 GeV/c protons
 - Many thanks to Maurice Glaser and Federico Ravotti

Measurements

- TCT, CV and IV after 4 min 80°C annealing
- CV and IV during annealing studies at different temperatures

• Same depletion voltage for all samples before irradiation (309±5 V)

MCZ – Leakage current

• Leakage Current : As for DOFZ, FZ (and EPI)

RD50 MCZ - Inverse trapping time

- Measured after 4 min at 80°C
- Details were given on the 5th RD50 Workshop in Florence by A. G. Bates

$$\frac{1}{\tau_{eff_{e,h}}} = \beta_{e,h} \Phi_{eq}$$

Trapping parameter β at 5°C	β _e	β _h
	[10 ⁻¹⁶ cm ² /ns]	[10 ⁻¹⁶ cm ² /ns]
FZ (f2)	5.59 <u>+</u> 0.29	7.16 <u>+</u> 0.32
DOFZ (d1)	5.73 <u>+</u> 0.29	6.88 <u>+</u> 0.34
MCz (n320)	5.81 ± 0.32	7.78 <u>+</u> 0.39
DOFZ (W317)	5.48 <u>+</u> 0.22	6.02 <u>+</u> 0.29
Dortmund [2] DOFZ	5.08 <u>+</u> 0.16	4.90 <u>+</u> 0.16
Ljubljana [3] DOFZ and FZ	5.34 <u>+</u> 0.19	7.08 <u>+</u> 0.18
Lancaster/Hamburg [4] FZ	5.32 <u>+</u> 0.30	6.81 <u>+</u> 0.29
Hamburg [5] FZ, DOFZ and MCz	5.07 <u>+</u> 0.16	6.20 <u>+</u> 0.54

 \bullet Trapping parameter β after 23 GeV proton irradiation normalized to 5 $^\circ C$

RD50 Annealing of Trapping parameters

• Same behavior as previously observed for FZ silicon

CERN

• Deletion voltage extracted from CV, IV and TCT measurements

• Question: Is the material type inverted ?

RD50 TCT measurement – Hole injection

The induced current signal resulting from hole injection into a MCz silicon detector. The detector had been irradiated to 5.1x10¹⁴ p/cm² and the Vfd found through electron injection-QV method was 237V.

(660nm laser, backside illuminated)

• Detector is not "type inverted" after 5.1x10¹⁴ p/cm²

- Annealing at various temperatures (50 100°C)
- Measurement of full depletion voltage via CV measurements
- Aim:

RD50

- See if material has undergone "type inversion"
- Determine activation energy for the reverse annealing

Long Term Annealing - V_{fd}

RD50

- Two long term annealing steps observed in MCZ silicon
- Second step: Adds negative space charge as "reverse annealing"

• Measurement for different fluences and temperatures

- Second component: Can not be fitted with exponential function.
- No saturation observed (heated up to 10 days at 100°C)

RD50 Long Term Annealing - V_{fd}

- Type inversion during annealing
- Fit to the data impossible

.... seen before in EPI Silicon

Parameterization of Annealing Results

Change of effective "doping" concentration: $\Delta N_{eff} = N_{eff,0} - N_{eff} (\Phi, t(T))$ Standard parameterization: $\Delta N_{eff} = N_A(\Phi, t(T)) + N_C(\Phi) + N_Y(\Phi, t(T))$

RD50

Annealing components:

Short term annealing $\rightarrow N_A(\Phi, t(T))$

Stable damage $\rightarrow N_{C}(\Phi)$

Long term (reverse) annealing: Two components:

→ $N_{Y,1}(\Phi,t(T))$, first order process → $N_{Y,2}(\Phi,t(T))$, second order process

E. Fretwurst, Univ. Hamburg, RD50 workshop, Helsinki, June 2005

• E.Fretwurst (RD50 Workshop in Helsinki, June 2005)

RD50

• Time constants for the two components

- First component: time constant independent of fluence
- Second component: time constant depending on fluence

• Reverse annealing (1st component) faster for MCZ than for FZ/EPI ?

Conclusion

24 GeV/c proton irradiated n-type MCZ detectors have been investigated:

- Same leakage current increase as other silicon materials
- Same electron/hole trapping as for other silicon materials (including an annealing study at 80°C)
- Detector has not undergone "type inversion" up to 5×10¹⁴ p/cm²
 Reverse annealing is a beneficial effect (V_{fd} becoming less with time)
- Reverse annealing shows two annealing stages (like previously observed in EPI silicon)
- Unlike in EPI silicon no saturation of the 2nd stage observed (heated up to 10 days at 100°C)
- Preliminary results indicate that the first stage of the reverse annealing ("standard reverse annealing") occurs faster than in standard FZ silicon