Progress on p-type isolation technology

M. Lozano, F. Campabadal, C. Fleta, S. Martí*, M. Miñano*, G. Pellegrini, J. M. Rafí and M. Ullán

IMB-CNM (CSIC) Barcelona, Spain
* IFIC (CSIC) Valencia, Spain

The story so far...

- IMB-CNM is developing different detector technologies
- We are to process wafers for the Collaboration
- □ P-in-N and N-in-P
- Mask set designed by RD50
- Surface insulation provided only by p-spray (no layer for p-stops)

- Optimize the p-spray parameters before processing the RD50 wafers
 - Complete simulation process (ISE-TCAD)
 - Test runs to check simulation results and adjust p-spray implant parameters (dose, energy, SiO₂ layer thickness)

Simulation results

- V_{BD} decreases and leakage current increases as the p-spray implanted charge increases
- Need high p-spray doses to avoid inversion in the silicon surface in irradiated devices
- Compromise solution between reasonable V_{BD} and good strip insulation. Can be critical in devices fabricated on Cz silicon
- See presentation at the 6th RD50 workshop for details

Test runs 1 and 2

- New wafers from Siltronix
- <100>, p-type, 300 ± 15 mm
- \square ρ (nominal) = 30 k Ω ·cm, ρ (measured) = 20 k Ω ·cm
- Low p-spray implant doses, but all guarantee strip isolation, according to the simulations

	R	un 1	Run 2		
Wafer	E (keV)	Dose (cm ⁻²)	E (keV)	Dose (cm ⁻ ²)	
1	25	10 ¹²	45	10 ¹²	
2	25	1.4 × 10 ¹²	60	10 ¹²	
3	25	2 × 10 ¹²	75	10 ¹²	
4	30	10 ¹²	90	10 ¹²	
5	35	1012			
6	45	10 ¹²			

Test runs 1 and 2: results

- Bad results:
 - all devices in most wafers shorted
 - No correlation between results and process parameters
 - No agreement with expected values from simulation
 - Only two wafers with working detectors
- Siltronix wafers
 - Bad visual aspect of wafers
 - After investigating we discovered crystallographic defects
 - Wafers replaced by the company
- We believe bad results were due to the quality of the wafers

Run 1 and 2 inter-strip resistance

Test run 3

- We decided to repeat the only good wafer from run 2
- Six wafers processed with identical parameters to study the repeatability of the technology
- 3 Siltronix wafers from a different batch than previous two runs
- **3** Topsil wafers
- 2 more Siltronix wafers with corner parameters

Test run 3

Wafer	Vendor	Туре	ρ (kΩ·cm)	p-spray E (keV)	p-spray dose (cm ⁻²)
1	Topsil	DOFZ	1-5	45	10 ¹²
2	Topsil	DOFZ	1-5	45	10 ¹²
3	Topsil	DOFZ	1-5	45	10 ¹²
4	Siltronix	FZ	30	45	10 ¹²
5	Siltronix	FZ	30	45	10 ¹²
6	Siltronix	FZ	30	45	10 ¹²
7	Siltronix	FZ	30	45	5 × 10 ¹²
8	Siltronix	FZ	30	150	10 ¹²

Initial results from characterization: ALL wafers OK!!

Pad detectors: Breakdown voltage

	V _{BE}		
p-spray	simulated	measured	
45 keV 10 ¹² cm ⁻²	900	> 700 V	6 wafers
150 kev 10 ¹² cm ⁻²	710	~ 700 V	
45 kev 5×10 ¹² cm ⁻²	210	~ 250 V	

Microstrip detectors: Breakdown voltage

V_{BD} between 100 and 200 V for all wafers

Microstrip detectors: Leakage current

- Microstrips with a p-spray dose of 10¹² cm⁻² are not fully isolated
- Large leakage currents in guard ring
- Should improve with wafer cutting

Microstrip detectors: Leakage current

	Manufacturer	I(diode)	I(ring)
45 keV 10 ¹² cm ⁻²	Siltronix (3 wafers) Topsil (3 wafers)	70 ± 40 nA 500 ± 200 nA	2.8 ± 0.8 mA 1.3 ± 0.2 mA
150 kev 10 ¹² cm ⁻²	Siltronix (1 wafer)	120 ± 50 nA	200 ± 50 µA
45 kev 5×10 ¹² cm ⁻²	Siltronix (1 wafer)	2 ± 1 µA	400 ± 30 nA

- Measured at VFD + 20V (62 & 86 V), corrected at 20°C
- Detector area ~ 1 cm²

Charge Collection Efficiency results

IFIC setup finished and operative with IR laser
 CNM setup in progress, finished by next month

Conclusions

- Good results
- Working devices
- Simulation agreement for pad detectors
- Strip detector breakdown voltage not much dependent on p-spray dose, limited by geometry
- We are ready to start RD50 process
 - We have to check epitaxial backside rim incompatibilities
- We propose to increase both energy and dose, i.e.:
 - Energy: 100 120 keV
 - Dose: 2 3 × 10¹² cm⁻²

Reminder of RD50 process

Technology	Wafers	Growing method	Туре	Wafer origin	Comments
P-in-N	4	MCZ	N	RD50	>500 Ω·cm, 300 μm
	2	EPI	N	RD50	thickness ~ 150 µm
N-in-P	4	MCZ	Р	RD50	>2 kΩ·cm, 300 μm
	4	FZ	Р	CNM	
	4	FZ	Р	CNM	Oxygen enriched DOFZ
	2	EPI	Р	RD50	thickness ~ 150 µm
N-in-N	2	FZ	N	СММ	Single side processing
TOTAL	22				

