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Introduction

Several arguments/observations suggest that the SM is an effective theory 
or the low-energy limit of a more fundamental theory with new degrees of 
freedom appearing above some energy threshold  Λ    ≥ v  ~  250 GeV

general parameterization of 
the possible new heavy d.o.f.
valid as long as we perform

low-energy experiments 

Key questions: 

How large can Λ be?
Which is the nature (⇔  symmetries)  
of the new degrees of freedom?

Flavour physics - and particularly precision studies of rare decays - 
provides a key ingredient to answer these questions

 ℒ =  ℒgauge(Ai, ψi)  +  ℒHiggs(φi, Ai, ψi ; Y,v)   +   Σ          O n
(d ≥5)  

cn  

Λd-4



Precision studies of rare decays  can (slightly) help to improve our knowledge 
about the SM Yukawa interaction but their main interest is in probing the flavour 
structure of new physics:

Rare processes mediated by 
Flavor Changing Neutral Currents

are the ideal candidates

no SM tree-level contribution
strong suppression within the SM by CKM hierarchy 
calculable with high precision within the SM if dominated 
by short-distance dynamics [key point] 

precise determination of flavor 
mixing within the SM

enhanced sensitivity to
[ the flavour structure of ] 

physics beyond the SM

  qi                              qj
                                

qi  →     qj
  + γ,  l+l−,  νν

qk + ... (?) 



Towards a model independent approach to the flavour problem:

Anatomy of a typical Oi
(6) relevant to FCNC rare decays:

Qγ
bs

     =   Wγ
bs

  
 DR

b
  σµνFµν H QL

s
   ~  mb bR σµνFµν sL  

flavour coupling

e.g.:   Wγ
bs ~  yb yt

2 Vtb
* Vts

for the SM short-distance contr.

The most restrictive choice is 
the so-called MFV hypothesis 

= same CKM / Yukawa 
suppression as in the SM

it cannot be worse than this without
serious fine-tuning problems

[Chivukula & Georgi, '86; Buras et al. '00; 
 D'Ambrosio,Giudice, G.I., Strumia '02]

flavour-blind electroweak structure

Limited number of independent
terms once we impose 
SU(3)c×SU(2)L×U(1)Y

gauge invariance

closely related to specific 
loop topologies,  e.g.:  

DRσµνF µνH QL   ~ 
γ 



∆F=2 box

∆F=1 
4-quark box

gluon
penguin

Z0

penguin

H0
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γ
penguin

 Bd→ππ, Bd→ρπ, ...

Bd→Xd γ, Bd→ππ, ... 

Bd→Xd l
+l−, Bd→Xd γ 

Bd→ππ, ...

b  → s  (~λ2)  
 

b  → d  (~λ3) 
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Towards a model independent approach to the flavour problem:

The FCNC matrix:

each box correspond to an
indep. combination of dim.-6

SU(3)× SU(2)×U(1)-invariant 
operators

(QL
bΓQL

s)2
⋯

⋮
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Towards a model independent approach to the flavour problem:

∆ΜK,  εK      

ε'/ε, K→3π, ...     

ε'/ε, KL→π0l+l−, ...  

ε'/ε, KL→π0l+l−, ...  

ε'/ε, KL→π0l+l−, 

K→πνν, K→µµ, ...     

KL,S→µµ

Bd→φK, Bd→Kπ,  ...

∆ΜBs                

ACP(Bs→ψφ)        

Bd→Xs γ,  Bd→φK, 

Bd→Kπ, ...

Bd→Xs l
+l−, Bd→Xs γ

Bd→φK, Bd→Kπ, ... 

Bd→Xs l
+l−, Bs→µµ  

Bd→φK, Bd→Kπ, ... 

Bs →µµ  

 Bd→ππ, Bd→ρπ, ...

∆ΜBd               

ACP(Bd→ψK)        

Bd→Xd γ, Bd→ππ, ... 

Bd→Xd l
+l−, Bd→Xd γ 

Bd→ππ, ...

Bd→Xd l
+l−, Bd→µµ  

Bd→ππ, ...

Bd →µµ  

 th.   error  < 10% 
   =  exp. error  < 10% 
   =  exp. error  ~ 30% 

~
~



General properties of  K  (ll, νν) + nπ  decays

 I. Clean electroweak short-distance amplitude

      [similar -within the SM- for all the channels] 

II. Long-distance amplitude of e.m. origin 

      [K  ll + nπ modes only]



 I. The clean electroweak short-distance amplitude

Electroweak penguins and box diagrams determine the initial conditions of the 
effective FCNC Hamiltonian: 

Q=s dV−AV−A

Q9 V=s dV−A l lV
Q10 A=s dV−A l lA

H eff = Σi Ci(MW) Qi 

Thanks to the "hard" GIM mechanism, Z-peng. and box diagrams give rise to a scale-
independent amplitude which is dominated by the top-quark exchange:

    

2                2

2                2

Z

q=u,c,t

+ box

⇒  Ci(MW)  ~  mq
  VqsVqd   ∼

     2      *

  λq

  
2

  ΛQCD λ     (u)

  mc  λ
  
+ i mc  λ

5
(c)

  mt  λ
5
 + i mt   λ

5
(t)

  s

 

  d  

W

[ λ = sin θc] QCD corr. small and known beyond LO

 large CPV-phase



 I. The clean electroweak short-distance amplitude

Electroweak penguins and box diagrams determine the initial conditions of the 
effective FCNC Hamiltonian:

H eff = Σi Ci(MW) Qi 

 Hadronic matrix element: 〈 π | (sd)V-A | K 〉
   known (from Kl3) with excellent accuracy

 Lepton pair in a CP eigenstate: the contrib. 
   of  H eff  to KL  π0 + ll (νν) is CPV

Q=s dV−AV−A

Q9 V=s dV−A l lV
Q10 A=s dV−A l lA



 I. The clean electroweak short-distance amplitude

Electroweak penguins and box diagrams determine the initial conditions of 
effective FCNC Hamiltonian:

H eff = Σi Ci(MW) Qi 

QCD corrections
below the e.w. scale

[RGE] mixing with 
4-q operators: γ  

g

Q2  c, u

p ~ µ

large effect in 
CPC γ-penguin 

amplitudes

Negligible corrections for  Im(Cν)  & Im(C10A) KL  π0νν 
Small & calculable [charm loops] for  Im(C9V) KL  π0e+e− 

Small & calc. [charm loops] for Re(Cν) & Re(C10A) K+
  π+νν, KL  µ+µ−  

Huge and not stable [long distance] for  Re(C9V) K+
  π+e+e− 

H eff = Σi Ci(µ~ 1 GeV) Qi 

Q=s dV−AV−A

Q9 V=s dV−A l lV
Q10 A=s dV−A l lA



["XL": 1γ]   K 
±

(KS) π±(π0)l
+
l
− 

π
π-

π+
K γ

AshortAlong ~ 10−2

Hopeless to disentangle 
short−distance effects

["L": 2γ, J=0]    KL µ+µ− 

 AshortAlong ~ 1

KL
["S": 2γ, J=2]   KL  π0e+e- 

 II. The e.m. long-distance amplitude in  K  (π) ll  modes 

 AshortAlong   < 1 

KL

Qualitative picture:

Possible to obtain significant 
constrains on realistic 
(but non-MFV) NP models 

Possibile to perform precision 
tests of short-distance dynamics

Quantitative analysis possible 
using low-energy EFT approaches

π0

NEW
 !



Status and perspectives of the four golden modes

Neutrino modes: 

No leading long distance contributions [only Z-penguin & W-box ⇒    hard GIM 
suppression effective also for the leading l.d. terms]  

Dominant uncertainty from the perturbative charm contribution [NNLO corr.] 
+ subleading long distance terms [power-suppressed higher-dim. operators ] 

K+ π+ νν
Buchalla & Buras  '97-'99
Lu & Wise '94
Falk et al. '00

large fraction of the present 
error still due to parametric

CKM uncertainties

   ρc = 1.40 ± 0.06     ⇒    δ BRth ≈  8% 

On-going theoretical activity to reduce δ BRth 
below the 5% level: Munich ,  Frascati

BR(K+)[SM] = C ∣Vcb∣
4 [(ρ −ρc)

2 + (ση)2] = (8.0±1.0)×10–11
_                      _

0       1

η
_

ρ
_

K+ π+νν
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BR(K+)exp = (1.47      ) × 10
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- 0.9

E787+E949 [BNL]  '04 
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Status and perspectives of the four golden modes

Neutrino modes: 

No leading long distance contributions [only Z-penguin & W-box ⇒    hard GIM 
suppression effective also for the leading l.d. terms]  

Dominant uncertainty from the perturbative charm contribution [NNLO corr.] 
+ subleading long distance terms [power-suppressed higher-dim. operators ] 

BR(K+)[SM] = C ∣Vcb∣
4 [(ρ −ρc)

2 + (ση)2] = (8.0±1.0)×10–11
_                      _

K+ π+ νν

K+ π+νν

              68%    95%

     

± 10 %

if we could decrease the
error at the 10% level...

The situation could become
quite interesting...

BR(K+)exp = (1.47      ) × 10
10−+1.9

- 0.9



Status and perspectives of the four golden modes

Neutrino modes: 

No leading long distance contributions [only Z-penguin & W-box ⇒    hard GIM 
suppression effective also for the leading l.d. terms]  

Dominant uncertainty from the perturbative charm contribution [NNLO corr.] 
+ subleading long distance terms [power-suppressed higher-dim. operators ] 

BR(K+)[SM] = C ∣Vcb∣
4 [(ρ −ρc)

2 + (ση)2] = (8.0±1.0)×10–11
_                      _

K+ π+ νν

N.B.:  plotting the BR(K+)exp 

contour in the ρ−η  plane is 
only a fast way to compare it 
with the SM prediction:

the main interest  of such 
measurement is not a more 
precise determination of Vtd 
but the extraction of a key 
information about NP

    95%   68%    

     

K+ π+νν



Status and perspectives of the four golden modes

KL  π0 νν  
 

CPV transition if the lepton pair is in  J CP = 1--, 1++ [leading dim.-6 operators]  
⇒    charm & long-distance effects totally negligible

0       1

η
_

ρ
_

K+ π+νν

KL  π0νν  

Littenberg, '89
Buchalla & Buras  '97
Buchalla & G.I. '98

BR(KL)[SM] = 1.48× 10–11
mt(mt)

166 GeV

Im(Vts
*Vtd)

10–4

2.3 2

= (3.0±0.6)× 10–11

th. error ~ 2% ! control the amount 
of CPV within the SM

Best exp. bound [KTeV '99] 
still very far from the SM level:

 B(KL  π0νν) < 5.9×10
−7

[using  π0  γe+e− ]
 



The 3 components of the  KL  π0 l+l− amplitude:

B.  indirect CPV
determined by KS  π0 l+l−     

+ theory to fix the sign

no interference & different Dalitz plot 
predicted by theory with good accuracy 

 in terms of rate & spectrum of  KL  π0 γγ 

A.  direct CPV amplitude 

short-distance dominated
very similar to KL  π0 νν 

C.  CPC amplitude  

KL  π0 l+l−  

interference

need exp.
input

 need exp.
 input

KL

π0

Z

  d 

K 0 s

  (+ box )

γKL            KS

π 0

ε

π0



Thanks to some recent 
results by NA48-NA48/1:

B(KS  π0 e+e−)mee > 165 MeV = (3.0      ± 0.2)× 10
9−+1.5

−1.2

B(KS  π0 µ+µ−)                    = (2.9      ± 0.2)× 10
9−+1.4

−1.2

B(KL  π0 γγ)mγγ  < 110 MeV    <  0.9× 10
8−

+

Some related th. works:
Buchalla, D'Ambrosio, G.I. '03
G.I., Smith, Unterdorfer '04 
Friot, Grenat, de Rafael '04

We finally have a clear picture 
of the various terms:

B(KL  π0 l+l−)[SM] = [ Cmix + Cint yt + Cdir yt
2 + CCPC ] × 10

12−
Im(Vts

*Vtd)

10
−4

             (e+e−)  ≈    23    +    (10    +     4)   +   0       (3.7 ± 1.0)×10⇒ 11−

             (µ+µ−)  ≈   5.4    +   (2.5    +  1.8)   +  5.2       (1.5 ± 0.3)×10⇒ 11−

yt = 

KL  π0 l+l−  



B(KL  π0 e+e−)[SM]  = (3.7 ± 1.0)× 10
11−

[   ≈ 50% due to short dist.] 

B(KL  π0 µ+µ−)[SM] = (1.5 ± 0.3)× 10
11−

[   3≈ 0% due to short dist.]

B(KL  π0 e+e−)exp  < 2.8×10
10−

[90% CL] KTeV  '03

B(KL  π0 µ+µ−)exp < 3.8×10
10−

[90% CL]   KTeV  '00

Errors on SM predictions dominated by the large (exp.) uncertainty on 
B(KS  π0 l+l−), but irreducible theoretical error below 10%

not too far...

Very interesting candidates for future dedicated experiments

More observables to be studied [Dalitz plot, time-dependent distrib.]

Different sensitivity to NP with respect to  KL  π0 νν   

the 3 decay modes  KL  π0 +  e+e−, µ+µ−, νν
are sensitive to different short-distance structures 

  ⇒ 3 independent info on CPV beyond the SM

Q=sdV−A V−A

Q9V=sdV−A l lV
Q10A=sdV−A l lA



Discriminating power of  the combined measurements

B(KL  π0 e+e−) + B(KL  π0 µ+µ−)

with respect to non-SM scenarios:

G.I., Smith, Unterdorfer '04

 [Buras et al. '04 ]



Relative error on Im(Vts
*Vtd)

vs. 
relative exp. errors on  B(KS  π0 e+e−) & B(KL  π0 e+e−) 

σ B(KL)

 σ B(KS) F. Bossi, V. Patera [KLOE]
& G.I., work in prog.



 Rare FCNC decays beyond the SM

Natural solution of the flavour (+hierarchy) problem:

Λ ∼ 1 TeV + flavor-mixing protected by additional symmetries 

As long as we are interested only in low-energy 
rare processes, the most important feature of the 
NP model is the nature of this symmetry

Minimal Flavour Violation (MFV) hypothesis: 

The breaking of the flavour symmetry occurs at very high scales and is 
mediated at low energies only by terms prop. to SM Yukawa couplings

●  natural implementation in many consistent scenarios 
   [SUSY, technicolour, extra dimensions,...]

● possible to build a predictive low-energy EFT                   
model-independent approach

most restrictive 
possibility



unknown
flavour−blind

dynamics

〈Y 〉 〈Y 〉

ΛF

breaking of GF

by means of 〈Y 〉
  

ΛH  (~ TeV)

flavour-blind dynamics 
[non-SM degrees of freedom 

stabilizing the Higgs mass term]
  

SM degrees
of freedom

natural cut-off 
scale of SM as EFT 

The MFV hypothesis can be considered as the most pessimistic scenario:
⇒    deviations from the SM in FCNCs bounded by flavour-conserving 

e.w. precision observables  



E.g.: Z-penguins & Rb

Z

tR

tL                              
tL 

⊗⊗

Rb = Rd [ 1  − Gf m t
22π 2 2   +... ]    ≈ 0.2200  −  0.0024 +...

  bL bLW 

Rb
exp

  =  0.2163  ±  0.0007 same e.w.-Yukawa 
structure of the leading 

K  πνν  amplitude

The O(10-3) accuracy on Rb  of LEP let us to probe the      
genuine e.w.-Yukawa loop amplitude only at the 20-30% level

tree +flavour univ. terms

A 10% measurement of B(K  πνν) [or B πνν] would probe the 
same e.w.-Yukawa structure (assuming MFV) at the 6-8% level

 Rb =  
Γ(Z  bb) 

Γ(Z  had) 

 b   b W 

+

breaking of 

universality

driven by



E.g.: Z-penguins & Rb

Z

tR

tL                              
tL 

⊗⊗

Rb = Rd [ 1  − Gf m t
22π 2 2   +... ]    ≈ 0.2200  −  0.0024 +...

  bL bLW 

Rb
exp

  =  0.2163  ±  0.0007 same e.w.-Yukawa 
structure of the leading 

K  πνν  amplitude
tree +flavour univ. terms

 Rb =  
Γ(Z  bb) 

Γ(Z  had) 

 b   b W 

+

breaking of 

universality

driven by

Even within the most pessimistic NP scenario O(30-50%) deviations from 
SM possible in BR(rare short-distance dominated FCNC decays)  

O(10%) measurements of BR(rare) probe NP parameter space of NP not 
cover yet by LEP 



Beyond Minimal Flavour Violation
[new sources of flavour symmetry breaking at the TeV scale]

A priori the most natural possibility
   naturally appearing in several specific scenarios [e.g. SUSY: huge literature] 

challenged -at present- by the good agreement with SM in ∆F=2 sector

General features:

Z

tR

uL
(s)

                          
uL

(s)
  

⊗⊗

  sL dLW 

Some decoupling between ∆F=2 & ∆F=1                        

[i.e.: δNP(∆F=1) ~ 100%  vs. δNP(∆F=2)~10%]                  

possible thanks to the interplay between SU(2) ⋅  U(1)         
& flavour symm. breaking

Rare kaon decays are particularly sensitive to new sources of flavour symm.       

breaking because of  the severe CKM suppression [ Vts
*Vtd  ∼ λ5 ]  

Colangelo & G.I. '98,
Nir & Worah '97; 
Buras, Romanino & Silvestrini, '97



E.g.: B(Kπνν) within generic MSSM 

  [including all the phenomenological constraints from  εK, ∆MK, b  sγ, ... ]

 Buras et al. '04 

Γ(KL  π0νν)  <  Γ(K+ π+νν)

 Grossman-Nir bound:

[ Im(A)   <    |A|  ] 

B(KL  π0νν)  < 4.4 B(K+π+νν)

⇓



Conclusions 

 In the kaon sector we can identify 4 outstanding modes:

 In all of them there is still room for sizable NP effects: 

 Measurements of these modes at 10% level (or below) ⇒   substantial improve          
   in  understanding flavour dynamics at the TeV scale (true for any realistic NP)

 Complementarty of the 4 modes with respect to NP

K+ π+ νν     KL  π0 νν     KL  π0 e+e−     KL  π0 µ+µ−



2       4      6     8   10  12

Λ  (TeV)

  10

    1

  0.1

0.01

σ rel

AFB(B→  Xs l
+l–)

B(B →   πνν)
B(B→  Xs νν)
B(KL →   π0νν)

B(K +→   π+νν)

B(B→  Xs l
+l–)

B(B→  K*l+l–)

bounds on          (QLYUYUγµQL ) LL γµ LL      within MFV  [ σ(Vij)=1% ]
1 

Λ2


