

Prog. Report & Plans on Demonstrator & Ultimate Sensors

Marc Winter (for IReS-DAPNIA-LPCC-LPSC)

- MIMOSA-14 (alias MIMO ★-2) beam test results
- Plans for MIMO \bigstar -3 \mapsto demonstrator
- Progress and Plans for the final sensors: 1) fast col.. // with ADC, 2) high precision array
- Summary

AMS 0.35 μm OPTO techno. (... may still be available for 10 yrs ...):

 \diamond 2 matrices of 64 x 128 pixels (30 μm pitch) \mapsto active area of 4 x 4 mm²

- \hookrightarrow 1 matrix with rad. hard pixels (already tested with MIMO-11)
- **♦ JTAG architecture for steering**

♦ frame r.o. time: 0.8, 1.6, 4.0 ms (pixel r.o. frequency: 10, 4, 2 MHz)

Developed for STAR vertex detector upgrade:

 \diamond operated at T $\lesssim 40^{\circ}$ C

 \diamond required rad. tolerance: \lesssim 3 \cdot 10 11 n $_{eq}$ /cm $^2\,$ – O(10) kRad/yr

 \hookrightarrow installation of Large version inside apparatus in 2007/2008

MIMO **+**-2 beam test results

DESY: 5 GeV/c Electrons in November 2005

M14 ; run 14508; Pl 9, sub 1, dist 150; Gain 8.24; eff 99.974 +- 0.018; Seed 5.0; Neigh 2.0

M14 ; run 14512; Pl 9, sub 1, dist 150; Gain 8.00; eff 99.985 +- 0.015; Seed 5.0; Neigh 2.0

M14 ; run 14513; Pl 9, sub 1, dist 150; Gain 6.92; eff 99.890 +- 0.039; Seed 5.0; Neigh 2.0

EUDET meeting

Summary of MIMO **±**-2 Beam Test Results

 \therefore chips available for mounting \sim end '06

Temperature. C

5 10 15 20 25 30 35 40

210

200^{LI}-5

0 5 10 15 20 25 30 35 40

Temperature. C

12

10

8^[]

0

Fabrication process explored with MIMOSA-9, -11, -14, -15

 \hookrightarrow assessed in terms of epi. thickness, noise & S/N (T), rad. tolerance, ...

Excellent m.i.p. detection performances (observed with 120 GeV/c π^- at CERN-SPS):

 \circ S/N \sim 20-30 (MPV) \rightarrow ϵ_{det} \sim 99–99.9 % \circ σ_{sp} = 1.5 μm (20 μm pitch) – 3 μm (30 μm pitch)

AMS-0.35 μm OPTO: most attractive process tested up to now \mapsto baseline for further sensor R&D (seems available for long ...)

NEXT STEPS

SENSORS EQUIPPING THE TELESCOPE DEMONSTRATOR

MIMO 🛧 -3L (for Large) :

- Technology: AMS 0.35 OPTO
- \diamond STAR upgrade for physiscs run \leq 2009 (AuAu coll.)
- \circ 640 x 256 pixels (30 μm p;itch) = 10 sub-arrays of 64 x 256 pixels
- \diamond Active surface \sim 19.2 x 7.7 mm 2 (10 x MIMO \bigstar -2)
- \circ 2 // outputs (50 MHz) \mapsto t $_{r.o.}$ = 1.6 ms
- ♦ Same JTAG design as MIMO★-2
- Fabrication planned for late Summer 2006 via engineering run

 \hookrightarrow to be mounted on 20 cm ladders at LBNL in 2007 \mapsto physics \geq 2008

Reticle (engineering run) will host several other chips

MIMO \bigstar -3M (for Medium) = 40 % of MIMO \bigstar -3L surface

- \circ 256 x 256 pixels (30 μm p;itch) = 4 sub-arrays of 64 x 256 pixels
- \diamond Active surface \sim 7.7 x 7.7 mm 2 (4 x MIMO \pm -2)
- o 4 // outputs (10 MHz) \mapsto t_{r.o.} = 1.6 ms (baseline)
- ♦ Same JTAG design as MIMO ★-2
- To be fabricated planned in same engineering run as MIMO \pm -3L
- **Some (rather minor) details may still vary w.r.t. the above (e.g. sub-arrays of 64 x 320 pixels)**

Time -Line: chip fabricated and tested \leq end 2006

PROGRESS AND PLANS FOR

FINAL SENSORS EQUIPPING THE TELESCOPE

EUDET meeting **Fast Col. // Chip with Discri Output: Beam Test Results**

▶ MIMOSA-8 tests with 5 GeV/c e⁻ beam at DESY in September 2005

Excellent m.i.p. detection performances despite modest thickness of epitaxial layer

 \diamond det. eff. \sim 99.3 % for fake rate of \sim 0.1 %

 \diamond discriminated cluster multiplicity \sim 3–4

Archi. validated for next steps: techno., rad. tol. pixel at T_{room} , ADC, zero supp., etc. \mapsto EUDET (2008)

MIMO \bigstar -3L and MIMO \bigstar -3M manufactured via engineering run hosting several other devices: ILC VD, CBM VD, other GSI expts, generic functionnalities, ...

Several devices are relevant for EUDET:

o new version of MIMOSA-8 (rad. tol. pixe, col. // r.o., digital output with 2xCDS & discri.)

♦ various 4-5 bits ADC architectures to (ultimately) replace discri. of MIMOSA-8

 \circ imager prototype (512 x 512 pixels ?) for high precision hit position det. (13-15 μm pitch)

♦ several other test structures

First studies of zero suppression architecture behind ADC have started

High precision sensor design implemented in MIMOSA-15 will be tested early 2006

H Thinning investigations \lesssim 50 μm continue

Chip architecture for telescope demonstrator works very well

 \hookrightarrow few sensors will be available early 2006 for EUDET

Design of final sensor for demonstrator can start:

 \hookrightarrow : fabrication \leq end Summer 2006 \mapsto chips available for mounting \sim end 2006

... more details on output signals and chip steering in Wojciech's talk

Engineering run will also include:

o prototype (extension of MIMOSA-8) for final chip

various ADC alternatives for final chip

o imager prototype for high precision hit position determination

Zero suppression study for final sensor has started

BACKUP SLIDES

SPATIAL RESOLUTION, RAD. TOLERANCE, MIMOSA-8

EUDET meeting

Observed Spatial Resolution

 Single point resolution versus pixel pitch:
 chips mounted on Si-strip telescope (8 planes) installed on a 120 GeV/c π⁻ beam at CERN-SPS
 clusters reconstructed with eta-function, exploiting charge shared between pixels
 σ_{sp} ~ 1.5 μm (20 μm pitch)

 $\mapsto \sigma_{
m sp} \sim {f 5} \ \mu {
m m}$ (40 μm pitch)

 σ_{sp} dependence on S/N and on ADC granularity:
 results found with "simple" pixels are excellent (but no integrated signal processing ...)
 noise of FAST pixels will be ~ twice higher (~ 20 e⁻ ENC)
 effect simulated on real MIMOSA data (120 GeV/c π⁻) (simulation consistency cross-checked with data)

► $\epsilon_{det} \gtrsim$ 96 % if <S/N> \gtrsim 14 $\sigma_{sp} \lesssim$ 3 μm even if <S/N> \sim 10 and only 3-bit encoding

RADIATION TOLERANCE

EUDET meeting

Neutrons of O(1 MeV) at JINR (Dubna): irradiation of up to 10¹³n_{eq}/cm²

Tests with 2 sensors from diff. fabrication processes:
 AMS-0.6 (\$\leq\$ 14 \mum epitaxy)
 AMI-0.35 (\$\sim 4 \mum epitaxy)\$

← charge loss for $\lesssim 10^{12} n_{eq} lcm^2$ modest increase of I_{leak} & noise ($\lesssim 10$ %)

► AMS-0.35 OPTO (\gtrsim 10 μm epitaxy) \hookrightarrow S/N(MPV) vs fluence and T: \mapsto fluences of $\lesssim 10^{12} n_{eq} / cm^2$ acceptable, better performances with T < 0°C ($\epsilon_{det} \gtrsim$ 99.5 ± 0.1 %)

Rad. tolerance is fabrication process dependent \mapsto need more measurements

Room for improvement $? \rightarrow$ explore recovering procedures (vs t, T)

▶ 3 major effects expected from ionising radiation:

 \diamond Shift of threshold voltages: \propto Nb(holes) created & trapped in gate oxide \propto oxide thickness

 \hookrightarrow aim for \lesssim 10 nm thick oxide (\sim the case for \leq 0.35 μm technologies)

♦ Leakage current in NMOS transistors ♦ Leakage current in N-channel intertransistors

> Aim for short integration time and for $T \leq 0^{\circ}C$

Pixel designs avoiding thick oxide around N-well and including guard-ring

Increase of leakage current depends on the diode layout. Probable reason: Presence of thick oxide (FOX) near the diode.

Radiation hardened pixel remains stable after irradiation.
Obvious reason: Leakage current increases after irradiation slower than for the standard pixel.
S/N of the radiation hard pixel is not yet optimized (See MIMOSA15).

MIMOSA-8 (FAST COL. // WITH DISCRIMINATED OUTPUT)

CHARACTERISTICS AND LAB TEST RESULTS

Achieving High Read-Out Speed without Ext. Trigger

MIMOSA-8:

- ullet TSMC 0.25 μm digital fab. process (8 μm epitaxy)
- 32 // columns of 128 pixels (pitch: 25 μm)
- 4 sub-arrays featuring AC and DC coupled on-pixel voltage amplif.
- on-pixel CDS
- discriminator at end of each column

- \diamond conversion factor: 50 110 $\mu V {\rm /e^-}$,
- \diamond pixel noise (including CDS): \sim 13 18 e $^-$ ENC !
- \diamond little pixel-to-pixel dispersion (< 10 e⁻ ENC)!
- ♦ discriminator operational:
- $\hookrightarrow \textbf{discriminated} \ {}^{55}\textbf{Fe X-Ray clusters observed } !$
- Architecture seems worth extending with integ. ADC → EUDET E.U. project

EUDET meeting . Application to the ILC Vertex Detector

- **•** Geometry: 5 cylindrical layers (R=15 60 mm), $||cos\theta|| \le 0.90 0.96$
- $ightarrow \sigma_{IP} = \mathbf{a} \oplus \mathbf{b}/\mathbf{p} \cdot \mathbf{sin^{3/2}} heta$, with a < 5 μm and b < 10 μm
- **>** Read-out time: ¶ 25 μs in L0 ¶ 50 μs in L1 $\therefore \leq$ 200 μs in L2, L3, L4

Layer	Radius (mm)	Pitch (µm)	t _{r.o.} (μs)	N <i>lad</i>	N _{pix} (10 ⁶)	P ^{inst} diss (W)	P ^{mean} diss (W)	
L0	15	20	25	20	25	<100	<5	
L1	25	25	50	26	65	<130	<7	
L2	37	30	<200	24	75	<100	<5	
L3	48	35	<200	32	70	<110	<6	
L4	60	40	<200	40	70	<125	<6	
Total				142	305	<565	<29	

▶ Ultra thin layers: \sim 0.1 % X₀/layer (?) ▶ Very low P^{mean}_{diss}: << 100 W (\mapsto minimise cooling) ▶ Rad. tolerance (3 yrs): \leq 3·10¹⁰ n_{eq}/cm² – \leq 6·10¹² e_{10MeV}/cm² (150 kRad, 2·10¹¹ n_{eq}/cm²)

Application to ILC: Various FE Architectures

> Fast col. // architecture (like MIMOSA-8), allowing to process signal (CDS, ADC, sparsification) during BX:

- \hookrightarrow complex, close to technology limits \mapsto much design & test effort needed (but quite universal output)
- Alternative \mapsto 2 phase μ circuit architecture exploiting beam time structure, reducing data flux:
 - 1) charge stored (eventually sampled) inside pixel during train crossing: O(1) ms
 - 2) signal transfered and processed inbetween trains: O(100) ms
- Different strategies of storage during train crossings:
 - \therefore 20 25 μm large pixels with \gtrsim 20 capacitors \therefore \lesssim 5 μm large pixels with 1 capa.(hit position) \hookrightarrow \lesssim 50 μs long snapshots/capacitor

▷ Difficulty: are small capacitors precise enough ?

and 50 μm large pixels for hit zone selection

 \triangleright Difficulty: can cluster size be \leq 3 pixels ?