

Polymorphic variation in the human genome and susceptibility to disease

Samuel Deutsch PhD Department of Genetic Medicine and Development University of Geneva

Human genome sequence

Only first Phase !

Consensus sequence for species

Annotation possible !

Human genome sequence: Diversity

Why is sequence **Diversity** important?

Genes and disease

Is a trait genetically determined ?

- Autosomal dominant
- Fully penetrant

Sequence Variation : most traits are not monogenic !

Figure 4-6 Human Molecular Genetics, 3/e, (© Garland Science 2004)

Sequence Variation : most traits are not monogenic !

Figure 4-11 Human Molecular Genetics, 3/e. (© Garland Science 2004)

Association studies: is the trait genetically determined ?

Association studies: is the trait genetically determined ?

Is broken further into multiple loci !

Figure 4-14 Human Molecular Genetics, 3/e. (© Garland Science 2004)

Association studies: is the trait genetically determined ?

% concordance

Disease frequency In Monozygotic versus Dizygotic twins

MonozygoticShare 100% of allelesDizygoticShare 50% of alleles

	MZ	DZ	
Epilepsy	70	6	
Multiple sclerosis	18	2	
Type 1 diabetes	40	5	
Schizophrenia	53	15	
Osteoarthritis	32	16	
Rheumatoid arthritis	12	3	
Psoriasis	72	15	

Is a quantitative trait genetically controlled ?

Total variance of a trait $V_P = V_E + V_G$

What fraction is genetic ? $h^2 = V_G / V_P$

Can calculate heritability using VC methods

Heritability

Sequence Variation : Types and uses

Microsatellites

- Variation in **number** of repeats
- Multi-allelic in population
- Highly informative
- Mostly non-functional
- Most useful for Family studies

Panel of **Microsatellites** evenly spaced throughout genome

Look at **co-segregation** patterns of disease with alleles of specific markers

Co-segregation of alleles with disease depends on:

1.Chromosomal localisation.

2. Physical/Genetic distance between marker and disease locus.

$$LOD(\theta) = \log_{10} \left[\frac{Like(\theta)}{Like(\theta = \frac{1}{2})} \right]$$

LOD score calculated by maximum likelihood :

Likelihood of observation / likelihood observation by chance

LOD > 3 is usually considered to be significant on a genome-wide basis

Mapping monogenic disorders: Great success story !

Genes with mutations causing human disorders

Examples include :

• Cystic Fibrosis (7q31)

Muscular dystrophy (X)

• Parkinson's disease (4q21)

 Deafness (about 45 different loci !)

Total ~ 25,000 genes

Linkage Analysis: Limits

Sequence Variation : SNPs

- Variation in single position
- bi-allelic in population

Most common type of variation, any two chromosomes differ every **600 bp**.

(about 10 million genome-wide)

- Less informative
- Can be functional

Most useful in population studies

Functional consequences of variation

Coding variation leading to protein changes

Sequence variation (SNPs, deletions/duplications, repeats, transposable elements)

Non coding variation affecting transcription of genes

Non coding variation affecting chromatin structure

Sequence Variation : SNPs

Population-based association studies

• If and **allele** i in **gene** x is involved in disease pathogenesis, one expects a significant **increase in frequency** in affected groups vs. control.

Population-based association studies

Two main approaches :

• Candidate gene: limited set of SNPs in set of candidate genes. In general gives a incomplete picture of phenotype determination.

• Indirect association: Genome-wide set of SNPs, no prior hypothesis, potentially could give a complete view of phenotype determination. Depends on LD. Only possible with important technology advances.

Association studies: Linkage disequilibrium

LD can be measured in several ways. For association studies rsq (coefficient of determination) is most common

$$r^{2} = \frac{\left[f(AB) - f(A)f(B)\right]^{2}}{f(A)f(a)f(B)f(b)}$$

8 **'tag' SNPs** for 50 SNPs in region

Association studies: HapMap project

Ultimate goal: find the minimal set of SNPs that capture most of the sequence variation nformation to perform association studies.

www.hapmap.org

Association studies: Genotyping technologies

Table 2 Selected commercially available high-throughput genotyping platforms						
Company	Method of allele discrimination	Method of detection	Number of assays detected simultaneously			
Third Wave	PCR, cleavase	Fluorescence; plate reader	1 (multiplexed 100 stage only)	-fold at PCR		
Sequenom	PCR, primer extension	Mass spectrometry	7–12			
ABI	PCR, primer extension	Fluorescence; gel electrophoresis	48	New 300K bead		
Illumina	Oligo ligation, generic PCR	Fluorescence; tags on beads	1,536	array based on HapMap		
Parallele	Gap closure, generic PCR	Fluorescence; tags on array	10,000			
Affymetrix	Generic PCR, hybridization	Fluorescence; hybridization to array	10,000–100,000	Based on affymetrix arra		
Perlegen	PCR, hybridization	Fluorescence; hybridization to array	100,000+	technology		

Ilumina 300K array expected to capture about 70% of common variation

Genome-wide association feasible

Cost

Hirschhorn and Daly, Nat genet rev 2005

Association studies: Main problems

Many studies underpowered. For diseases with complex inheritance (λs<
20)and many loci with minor contributions (each allele with GRR< 3.0)
1000s rather than 100s of samples needed !

- How to deal with multiple testing problem ?
- Need new methods to extract G x G and G x E interactions !

Targeted drugs in the near future ?

FDA Approves BiDil Heart Failure Drug for Black Patients

The Food and Drug Administration (FDA) approved BiDil (bye-DILL), a drug for the treatment of heart failure in self-identified black patients, representing a step toward the promise of personalized medicine.

Heart failure is a condition in which the heart is weakened and does not pump enough blood. It can be caused by a variety of damage to the heart, including heart attacks, high blood pressure, and infections.

The approval of BiDil was based in part on the results of the African-American Heart Failure Trial (A-HeFT). The study, which involved 1,050 self-identified black patients with severe heart failure who had already been treated with the best available therapy, was conducted because two previous trials in the general population of severe heart failure natients found no henefit, but suggested a henefit of BiDil in black

Mapping genetic susceptibility to HIV infection

Collaborative study between the labs of **S**. Antonarakis, A. Telenti (Corinne Loeuillet) and J. Beckmann

Susceptibility to HIV: Genetics role ?

- Large difference in natural history of disease, two interesting groups:
 - Exposed non infected
 - Infected non progressors (rare, Familial segregation)
- Highly concordant susceptibility in twins
- Several known **polymorphisms** known to play a role.

Susceptibility to HIV: known genetic factors

Box 1

The contribution of chemokine or chemokine receptor polymorphisms to HIV-1/AIDS susceptibility

CCR5 Δ 32: CCR5 Δ 32 homozygotes are resistant to HIV infection; heterozygotes show slower disease progression.

Other CCR5 polymorphisms: numerous polymorphisms in CCR5, particularly promoter regions, affect CCR5 expression and the rate of progression to AIDS.

CCR2-64I polymorphism: associated with slower progression to AIDS.

CX₃CR1: rapid progression to AIDS in HIV-1-infected individuals who are homozygous for a variant of CX₃CR1. Two amino acid changes result in markedly impaired binding of CX₃CR1 to its ligand CX₃CL1.

CXCL12 (SDF-1): individuals who are homozygous for SDF1-3'A show a delayed onset of AIDS.

CCL2 (MCP-1): the MCP-1 -2578G allele is associated with a 50% reduction in the risk of acquiring HIV-1.

CCL5 (RANTES): the In1.1C allele is associated with a decreased expression of CCL5 and rapid progression to AIDS.

CCL3L1: low CCL3L1 gene copy numbers, relative to the ethnic population average, is associated with markedly enhanced HIV-1 susceptibility and progression to AIDS.

Viral Co-receptors

Chemotactic molecules

Co-receptor ligands

Susceptibility to HIV: viral life cycle

<u>Main aim</u> :

• Develop **cellular system** in which to dissect **genetic** factors

Validation:

- Can an *in-vitro* cellular system **re-capitulate** *in-vivo* situation ?
- Would such a system be **reproducible**?

An in vitro system for identification of lentiviral susceptibilit

SYSTEM:

- Cell transduction of **b**-lymphoblastoid cells
- VSV-G pseudotyped lentiviral vector, expression of eGFP (CMVpromoter)
- infection by spinoculation (3000rpm, 3h) wash, detection of eGFP expression by FACS (72h)

Susceptibility to HIV: Genetic analysis

15 CEPH families = ~200 individuals

Obtained information for 2600 **SNPs**

genomewide - publicly available in DBs.

CEPH families

CEPH : Centre d'Etude du Polymorphisme Humain

- Created in 1984 to provide resources for human genome mapping
- We used 15 families (N=200)

Susceptibility to HIV: Genetic analysis

Heritability:

-		p value	H2r	Trait	
Susceptibility	ł	0.0000016	0.5367977	CMVGFPper	1
1 5	1	0.0000087	0.4354729	CMVGFPMFIall	2
	J	0.0003233	0.8036432	CD39per	10
		8.53E-68	1	CD39MFIall	11
	``	6.27E-55	1	CD39ratio	12
		3.47E-10	0.496049	LMP1per	13
EBV marker	ł	1.24E-14	0.732135	LMP1MF1all	14
		2.01E-17	0.6194324	LMP1ratio	15
	J	0.0000185	0.996293	CD11aMFIall	16
N N N N N N N N N N N N N N N N N N N)	0.1273509	0.1366545	CD11aper	17
		0.0002416	1	CD11aratio	18
		3.48E-13	0.9050112	CD19MFIall	19
		0.0000001	0.8286046	0 CD19per	20
	l	0.0000579	1	CD19ratio	21
> innate immunity	Ì	0.000226	1	CD21MFIall	22
		2.41E-10	1	CD21per	23
		0.0136537	0.4659657	CD21ratio	24
		0.0000449	0.6998939	CD23MFIall	25
))	0.005566	0.7914027	CD23per	26
		0.0006306	0.517473	CD23ratio	27

Susceptibility to HIV: Linkage Results I

CMVper Multipoint

Susceptibility to HIV: Association using HapMap

Chromosome 8 CMVper association: Tag SNPs 3Mb centered on linkage finding

Trait distribution according to phenotype

Analysi	s of Var	iance for	CMV GFPper	:			
Source	DF	SS	MS	F	Р		
SNP	1	932.4	932.4	18.30	0.000		
Error	53	2699.7	50.9				
Total	54	3632.0					
				Individual	95% CIs	For Mean	
				Based on P	ooled StI	ev	
Level	Ν	Mean	StDev	+	+	+	+-
AG	7	35.934	8.800		(– –	*)
GG	48	23.580	6.896	(*)			
					+	+	+-
Pooled	StDev =	7.137		24.0	30.0	36.0	42.0

Chromosome 8 CMVper association: Fine mapping using all HapMap phase 2.0 data

