Molecular Modeling of Proteins: application to cancer immunotherapy

O. Michielin $^{(1,2,3)}$

(1) Centre Pluridiscipinaire d'oncologie CHUV, Lausanne, Switzerland

(2) Ludwig Institute for Cancer Research Epalinges, Switzerland

(3) Swiss Institute of Bioinformatics Dorigny, Switzerland

Introduction & historical note

Theoretical milestones:

```
Classical equations of motion: F(t) = m a(t)
Newton (1643-1727):
Schrödinger (1887-1961):
                              Quantum mechanical equations of motion:
                                      -ih \ \partial t \ \Psi(t) = H(t) \ \Psi(t)
                              Foundations of statistical mechanics
Boltzmann(1844-1906):
```

Molecular dynamics milestones:

Liqu
lids
Pro
otei
ins

Т

Molecular Modeling Principles

1) Modeling of molecular interactions

Free energy landscape

2) Simulation of time evolution (Newton)

Connection micro/macroscopic: intuitive view

Central Role of the Partition Function

Dynamical aspects of molecular recognition

Free energy: classical definition

The free energy is the energy left for once you paid the tax to entropy:

Theoretical Predictions: • *Approximate:* empirical formula for all contributions • *Exact:* using statistical physics definition of *G* Free energy: computational approaches

$$\Delta G = G_A - G_B = -k_B T \ln\left(\frac{Z_A}{Z_B}\right)$$

Free energy simulations techniques aim at computing ratios of partition functions using various techniques.

The CHARMM Force Field

$$V = \sum_{\text{Bonds}} K_b (b - b_0)^2 + \sum_{\text{Angles}} K_\theta (\theta - \theta_0)^2$$
$$+ \sum_{\text{Impropers}} K_\omega (\omega - \omega_0)^2$$
$$+ \sum_{\text{Dihedrals}} K_\phi \left[1 - \cos(n_\phi \phi - \delta_\phi) \right]$$
$$+ \sum_{i > j} \frac{q_i q_j}{4\pi\varepsilon} \frac{1}{r_{i,j}}$$
$$+ \sum_{i > j} 4\varepsilon_{ij} \left[(\sigma_{ij} / r_{ij})^{12} - (\sigma_{ij} / r_{ij})^6 \right]$$

MD Techniques: Microcanonical sampling

For an Hamiltonian of the form $H(\mathbf{p}, \mathbf{r}) = \sum_{i=1}^{3N} \frac{p_i^2}{2m_i} + \phi(r_{1, \dots, r_{3N}})$

in cartesian coordinates, the Hamilton equations of motion reduce to the Newton equations

$$\dot{r}_i = \frac{p_i}{m_i}$$
 $m_i a_i = \frac{-\partial}{\partial r_i} \phi(\mathbf{r})$ $i=1, ..., N$

Several numerical methods have been developed to integrate these equations. One of the most stable integrator is that of *Verlet*: for a small time increment dt, one can use a Taylor expansion of the function r(t):

$$r_{i}(t+\delta t) = r_{i}(t) + v_{i}(t) \,\delta t + \frac{1}{2} a_{i}(t) \,\delta t^{2} + \dots$$

$$r_{i}(t-\delta t) = r_{i}(t) - v_{i}(t) \,\delta t + \frac{1}{2} a_{i}(t) \,\delta t^{2} + \dots$$

Adding those equations, one gets r(t+dt) as a function of r(t) and r(t-dt).

$$\boldsymbol{r}_{i}(t+\delta t)=2\boldsymbol{r}_{i}(t)-\boldsymbol{r}_{i}(t-\delta t)+\boldsymbol{a}_{i}(t)\delta t^{2}$$

- In practice, this scheme is applied iteratively, starting from the initial conditions.
- Velocities are postcomputed as v(t) = [r(t+dt)-r(t-dt)] / 2dt.
- Positions are correct up to dt^4 and velocities to dt^2 .
- This scheme conserves energy with very good accuracy.

MD Techniques: Sampling of the various ensembles

1) Microcanonical ensemble (constant N, V,E)

$$H(\boldsymbol{p},\boldsymbol{q}) = \sum_{i}^{N} \frac{\boldsymbol{p}_{i}^{2}}{2m_{i}s^{2}} + \boldsymbol{\phi}(\boldsymbol{q})$$

2) Canonical ensemble (constant *N*, *V*, *T*)

$$H(\mathbf{p}, \mathbf{q}, p_s, s) = \sum_{i}^{N} \frac{\mathbf{p}_i^2}{2m_i s^2} + \phi(\mathbf{q}) + \frac{p_s^2}{2Q} + (3N+1)kT \ln s$$

3) Isothermic-isobaric ensemble (constant *N*,*P*,*T*)

$$H = \sum_{i}^{N} \frac{p_{i}^{2}}{2m_{i}s^{2}V^{2/3}} + \phi(V^{1/3}q) + \frac{p_{s}^{2}}{2Q} + (3N+1)kT\ln s + \frac{p_{V}^{2}}{2W} + P_{ex}V$$

Ergodic Hypothesis

Free energy calculation: Main approaches

Medical background: Cytotoxic activity of T lymphocytes

Tumor cell recognition by CD8+ T cells: the TCR-p-MHC complex

CD8+ T Lymphocyte

X-ray structure of bound TCR-p-MHC

Goals of the molecular modeling approach

Principles of peptide based immunotherapy

Regression of pulmonary melanoma metastases after vaccination with Melan-A peptide (patient LAU 446)

July 9, 2001 < 0.1 % of Melan-A specific CD8+ T cells in PBL September 24, 2001 0.3 % of Melan-A specific CD8+ T cells in PBL

Immunotherapy using adoptive transfert

Lymphodepletion combined with adoptive transfert

Dudley & al, JCO 2005

Goals of the molecular modeling approach

Free energy calculations:

Free energy calculation: Main approaches

Binding free energy decomposition: MM-PBSA, MM-GBSA

$$\begin{split} S &= S_{trans} + S_{rot} + S_{vib} & \text{B. Tidor and M. Karplus, J. Mol. Biol., 1994, 238, 405} \\ \Delta G_{solv} &= \Delta G_{solv,elec} + \Delta G_{solv,np} \\ \Delta G_{desolv} &= \Delta G_{solv,elec}^{comp} - \left(\Delta G_{solv,elec}^{lig} + \Delta G_{solv,elec}^{prot}\right) + \sigma \left(SASA^{comp} - \left(SASA^{lig} + SASA^{prot}\right)\right) \end{split}$$

Depending on the way $\Delta G_{solv,elec}$ is calculated:

Molecular mechanics – Poisson-Boltzmann Surface Area (MM- PBSA) J. Srinivasan, P.A. Kollmann *et al.*, *J. Am. Chem. Soc.*, **1998**, *120*, 9401

Molecular mechanics – Generalized Born Surface Area (MM- GBSA)

H. Gohlke, C. Kiel and D.A. Case, J. Mol. Biol., 2003, 330, 891

MM-GBSA Method: application to TCR-p-MHC $\Delta G_{bind} = \langle \Delta E_{gaz} \rangle + \langle \Delta G_{desolv} \rangle - T \langle \Delta S \rangle$

Examples of TCR optimization: 2C TCR

Residue	Domain	$\langle E^{sc}_{vdW}\rangle$	$\langle E^{sc}_{elec}\rangle$	$\langle \Delta G^{sc}_{elec,solv} \rangle$	$\langle \Delta G^{sc}_{np,solv} \rangle$	$-\langle TS^{sc}_{vib} \rangle$	$\langle \Delta G^{sc}_{bind} \rangle$
Sor03	CDB3	0.63	0.06	3.04	0.01	0.17	5.92
DI 100	CDR3	0.05	-9.00	3.04	-0.01	0.17	-0.20
Phe100	CDR3	-3.59	-0.74	1.36	-0.72	0.65	-3.04
Tyr31	CDR1	-3.46	-2.37	3.31	-0.61	0.75	-2.38
Tyr50	CDR2	-3.70	-4.02	5.63	-0.57	0.58	-2.08
Lys68	HV4	0.87	-56.18	53.34	-0.34	0.59	-1.72
Ser27	CDR1	-0.52	-5.14	4.32	-0.32	0.06	-1.60
Lys48	CDR2	0.63	-65.57	62.44	-0.26	1.25	-1.51
Tyr26	CDR1	-1.06	-1.46	1.79	-0.11	-0.11	-0.95
Ala28	CDR1	-0.73	0.49	-0.37	-0.33	0.13	-0.81
Ala101	CDR3	-0.40	-0.38	0.24	-0.08	0.02	-0.60
Leu104	CDR3	-0.10	-0.15	0.06	-0.00	-0.33	-0.52
Ser51	CDR2	-0.57	-1.58	1.77	-0.46	0.47	-0.37
Gln1	-	-0.16	-0.44	0.28	-0.00	0.00	-0.32
Ala103	CDR3	-0.04	-0.17	0.11	0.00	-0.19	-0.29
Pro30	CDR1	-0.10	-3.20	3.14	0.00	-0.12	-0.28
Phe66	-	-0.08	-0.10	0.18	0.00	-0.26	-0.26
Tyr49	CDR2	-0.21	0.15	-0.05	-0.00	-0.13	-0.24
Ser102	CDR3	-0.96	-4.31	5.08	-0.17	0.13	-0.23
Thr29	CDR1	-0.37	-1.55	3.03	-0.18	-0.12	0.81
Asp53	CDR2	-0.10	28.56	-27.32	-0.01	0.02	1.15

Free energy calculation: Main approaches

Computation of absolute TCR binding free energy

Simulation setup

- Gromos96 Force Field
- Gromacs Engine
- Particle Mesh Ewald (PME)
- Periodic boundary conditions
- Box: 80x80x150 A
- 26000 Water molecules
- 85000 Atoms
- Hydrogen shaken
- 2 fs timestep
- 0.5 ns / 24h on 4 alpha CPU

TCR binding free energy profile:

Application to the design of small molecule inhibitors EADock

Conformational sampling using genetic algorithms

Eadock: Evolutionary Parameters

Eadock: Definition of the fitness

A multi-objective fitness is used during the evolutionary process:

1) Simple fitness: CHARMM total energy with ε =4 and Rdie

2) Full fitness:

Simple

CHARMM total energy with solvation free energy computed using Generalized Born implicit solvent model

The simple fitness selects individuals

The full fitness selects between best ranked clusters

Minima of the simple fitness coincide with those of the full fitness

Choice of an optimal fitness Analysis of 700 decoys with two solvation models

Eadock: Evolutionary Parameters

Eadock: Evolutionary Parameters

Example of smart operator: Barbatruc

Starting conformation at 4.2 Å all atom RMSD

Barbatruc: final RMSD 0.7 Å

Standard minimization: final RMSD 3.2 Å

Test set for EADock benchmark

37 complexes, involving 11 different proteins

Protein	PDB	q	DoF	Hb A.	Hb D.	Mass	% B. Sur.	Protein	PDB	q	DoF	Hb A.	Hb D.	Mass	% B. Sur.
Anhydrase	1cil	-1	3	6	2	323.4	85.1	Penicillopepsin	1apt	1	17	6	5	501.7	85.9
	1cnx	0	10	6	3	331.4	74.2		1apu	0	15	6	4	485.7	85.0
	1okl	0	2	4	1	249.3	87.7	Ribonuclease	1asp	0	2	9	3	360.3	80.2
Arabinose	1abe	0	0	5	4	150.1	100.0		1rhl	-2	3	10	4	361.2	78.1
	1abf	0	0	5	4	164.2	100.0		1rls	-2	3	10	4	361.2	79.2
	5abp	0	1	6	5	180.2	100.0	Thermolvsin	3tmn	0	5	3	3	303.4	73.0
Carbocypeptidase	1cbx	-1	3	4	1	207.2	98.2	•	5tln	-1	7	5	3	320.3	79.8
	Зсра	0	4	4	3	238.2	97.7		6tmn	-1	11	8	3	471.5	73.2
	6сра	-1	9	8	2	477.4	82.3	Thrombin	1etr	0	7	6	4	504.6	87.9
FABP	1icm	-1	11	2	0	227.4	95.6		1ets	1	7	4	4	522.7	88.3
	1icn	0	14	2	1	282.5	96.0		1ett	1	7	3	3	429.6	88.2
	2ifb	-1	13	2	0	255.4	96.9	Trypsin	1pph	1	7	3	3	429.6	69.9
Neuraminidase	1nnb	-1	4	8	5	290.3	89.7	<i>/</i> F -	1tna	1	1	0	1	114.2	91.6
	1nsc	-1	4	9	6	308.3	92.0		1tni	1	4	0	1	150.2	85.6
	1nsd	-1	4	8	5	290.3	92.6		1tni	1	2	0	1	122.2	92.4
Cyt. P450	1phf	0	1	1	1	144.2	100.0		1tnk	1	3	0	1	136.2	91.0
	1phg	0	3	3	0	226.3	100.0		1tnl	1	1	0	1	134.2	92.7
	2cpp	0	0	1	0	152.2	100.0		1tpp	0	2	3	2	206.2	86.9
									3ptb	1	1	0	2	121.2	94.6

 $-2 \le q \le 1$ ligand charge $0 \le DoF \le 17$ number of ligand degrees of freedom $0 \le Hb A. \le 10$ number of ligand hydrogen bond acceptors $0 \le Hb D. \le 6$ number of ligand hydrogen bond donnors $114 \le Mass \le 523$ ligand mass (g/mol) $69.9 \le \% B. Sur. \le 100$ % of ligand SASA buried upon complexation

Rureulava at al ICAMD 2002

Docking results for the 37 test ligands

ALL RESULTS	_				Rank1	ALL RESULTS	-				Rank1
	Seeding w/ n	ative bind	ling mode	Э	Seeding 8-11Å		Seeding w/ native binding mode			Seeding 8-11Å	
Testcase Complex	AutoDock	DOCK	FlexX	GOLD	EADock	Testcase Complex	AutoDock	DOCK	FlexX	GOLD	EADock
Trypsin						€-Thrombin					
3ptb	0.8	0.59	1.11	1.09	0.51	1etr	4.61	6.66	7.26	5.99	11.07
1tng	0.62	0.86	1.08	1.89	0.27	1ets	5.06	3.93	2.11	2.39	1.25
1tnj	1.21	1.56	1.73	1.9	0.69	1ett	8.12	1.33	6.24	1.3	5.07
1tnk	1.69	1.87	1.7	3.08	1.28	Thermolysin					
1tni	2.61	5.26	2.73	4.93	2.25	3tmn	4.51	7.09	5.3	3.96	0.61
1tnl	0.41	2.08	3.74	1.61	0.88	5tln	5.34	1.39	6.33	1.6	8.35
1tpp	1.8	3.25	1.95	2.33	0.38	6tmn	8.72	7.78	4.51	8.54	8.92
1pph	5.14	3.91	3.27	4.23	0.98	Penicillopepsin					
Cytochrome P-450cam						1apt	1.89	8.06	5.95	8.82	1.65
1phf	2.09	2.39	4.68	4.42	4.58	1apu	9.1	7.58	8.43	10.7	1.19
1phg	3.52	5.57	4.87	4.2	1.68	Intestinal FABP					
2cpp	3.4	2.48	0.44	3.49	0.2	1icm	1.8	3.99	2.94	2.3	1.02
Neuraminidase						1icn	3.99	3.88	2.95	2.05	1.86
1nsc	1.4	4.86	6	1.02	0.48	2ifb	3.09	1.43	8.94	2.61	0.6
1nsd	1.2	4.51	1.56	0.96	0.55	Ribonuclease					
1nnb	0.92	4.51	0.92	0.84	1.17	1gsp	2.67	1.16	3.71	0.7	0.39
Carbocypeptidase						1rhl	0.96	0.71	1.15	1.08	1.02
1cbx	1.33	3.13	1.32	1.87	0.42	1rls	0.98	1.75	4.33	1.16	1.01
Зсра	2.26	6.48	1.51	1.87	0.81	Carbonic anhydrase					
6сра	8.3	8.3	9.83	4.96	3.7	1cil	5.81	2.78	3.52	6.04	3.48
L-Arabinose						1okl	8.54	5.65	4.22	3.55	5.79
1abe	0.16	1.87	0.55	0.18	0.22	1cnx	10.9	7.35	6.83	6.32	2.33
1abf	0.48	3.25	0.76	0.5	0.24	Overall success	46%	30%	35%	46%	76%
5abp	0.48	3.89	4.68	0.59	0.68						

> 2.0

Unsuccessful Prediction

≤ 2.0 Successful Prediction

Convergence of the 5 best clusters

Testcase: ribonuclease (1gsp)

Other EAdock examples:

Evolutionnary Process $G0 \rightarrow G150$

Ernest Feytmans

Vincent Zoete Aurélien Grosdidier Michel Cuendet Theres Fagerberg Antoine Leimgruber Pierre Chodanowski Hamid Hussain-Kahn Muriel André

Victor Jongeneel Roberto Fabbretti Bruno Nyffeler

LUDWIG INSTITUTE FOR CANCER RESEARCH

Jean-Charles Cerottini Pedro Romero Daniel Speiser Danielle Liénard

Others

(PAL

Ursula Roethlisberger John Maddocks Horst Vogel Paolo de Los Rios

Martin Karplus (Harvard) Andrej Sali (UCSF)