# EUROnu Annual Meeting, CERN March 24-25 2009 WP5 Session

# LAGUNA detectors: Water Cherenkov, Liquid Argon

Alessandra Tonazzo, <u>Nikolaos Vassilopoulos</u> (APC Paris)

# WP5 task for Water Cherenkov

"Define performance of water Cherenkov detectors for Super-Beam and Beta Beams, including efficiency as a function of threshold and background evaluation."

In addition, it would be nice to include the other front-runner detectors for neutrinos at super-beams and beta-beams:

Liquid Argon and Liquid Scintillator

The three types of detectors (MEMPHYS, GLACIER, LENA) are already participating in the LAGUNA FP7-DS, focused on underground sites.

Contact: Alessandra Tonazzo, APC Paris

Other participants: Thomas Patzak, Nikolaos Vassilopoulos [EUROnu postdoc], APC

Michela Marafini [PhD student], APC

interest from LAPTH-Annecy (A.Zghiche), LAL-Orsay (J.E.Campagne)

# **Reminder on LAGUNA**

Large Apparatus for Grand Unification and Neutrino Astrophysics EU-FP7 2008-2010 - Contact: A.Rubbia

7 possible underground sites:

-> test feasibility, choose optimum

3 possible detector technologies

-> study synergies/complementarity



#### Physics discovery potential within MEMPHYS, LENA, GLACIER: JCAP 0711:011,2007 proton decay and astrophysics

(ArXiv 0705.0116)

|                                              | Water Cerenkov                                             | Liquid Argon TPC                                      | Liquid Scintillator                                            |
|----------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|
| Total mass                                   | 500 kton                                                   | 100 kton                                              | 50 kton                                                        |
| $p \rightarrow e \pi^0 \text{ in } 10$ years | 1.2x10 <sup>35</sup> years<br>ε = 17%, ≈ 1 BG<br>event     | 0.5x10 <sup>35</sup> years<br>ε = 45%, <1 BG<br>event | ~10 <sup>32</sup> years in 1year<br>ε = 12%, BG under<br>study |
| p → v K in 10<br>years                       | 0.15x10 <sup>35</sup> years<br>ε = 8.6%, ≈ 30 BG<br>events | 1.1x10 <sup>35</sup> years<br>ε = 97%, <1 BG<br>event | 0.4x10 <sup>35</sup> years<br>ε = 65%, <1 BG<br>event          |
| SN cool off @ 10 kpc                         | 194000 (mostly $v_e p \rightarrow e^+ n$ )                 | 38500 (all flavors)<br>(64000 if NH-L<br>mixing)      | 20000 (all flavors)                                            |
| SN in<br>Andromeda                           | 40 events                                                  | 7<br>(12 if NH-L mixing)                              | 4 events                                                       |
| SN burst @ 10<br>kpc                         | ≈250 v-e elastic<br>scattering                             | 380 v <sub>e</sub> CC (flavor<br>sensitive)           | ≈30 events                                                     |
| SN relic                                     | 250(2500 when<br>Gd-loaded)                                | 50                                                    | 20-40                                                          |
| Atmospheric neutrinos                        | 56000 events/year                                          | ≈11000<br>events/year                                 | 5600/year                                                      |
| Solar neutrinos                              | 91250000/year                                              | 324000<br>events/year                                 | ?                                                              |
| Geoneutrinos                                 | 0                                                          | 0                                                     | ≈3000 events/year                                              |

Clear complementarity between techniques!

# The MEMPHYS detector



Laboratoire Souterrain de Modane



4800 m.w.e.

## Megaton Mass PHYSics @Fréjus

- Water Cherenkov ("cheap and stable")
- Total fiducial mass: 440 kt
- Baseline:
  - 3 Cylindrical modules 65x65 m
    - Size limited by light attenuation length (λ~80m) and pressure on PMTs
    - Readout: 12" PMTs, 30% geom. cover (#PEs =40%cov. with 20" PMTs)
- PMT R&D + detailed study on excavation existing & ongoing



http://www.apc.univ-paris7.fr/APC\_CS/Experiences/MEMPHYS/

arXiv: hep-ex/0607026 Contact: Th. Patzak (APC)

### **Water Cherenkov: Event Reconstruction**



Super-Kamiokande:

481 MeV muon neutrino (MC) produces 394 MeV muon which later decays at rest into 52 MeV electron.

# **MEMPHYS** physics goals

- Proton decay sensitivity:
  - up to  $10^{35} \text{yrs}$  in 10y from the "golden" channel: p  $\rightarrow$  e<sup>+</sup>  $\pi^0$
  - up to  $2x10^{34}$ yrs in 10y from p  $\rightarrow$  K<sup>+</sup> + anti-v
- SuperNova core collapse:
  - huge statistics from galactic SN => spectral analysis in E,t, flavour -> access SN collapse mechanism / neutrino oscillation parameters
  - sensitivity up to ~1 Mpc
  - possibility of early SN trigger (from event coincidence) up to ~5 Mpc
- SuperNova relic neutrinos:
  - observable in few years with significant statistics, according to most of existing models
  - direct measurement of v emission parameters possible
- and, of course... NEUTRINO BEAMS!

### **CERN-MEMPHYS:** Oscillation measurements with v beams

Campagne, Maltoni, Mezzeto, Schwertz hep-ph/0603172

 $\triangleright$   $\theta_{13}$  discovery reach and sensitivity to CP Violation

### Three options for future LBL exps

|                            | etaB                                                        | SPL                                           | Т2НК                                                    |
|----------------------------|-------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|
| Baseline:                  | 130 km (CERI                                                | N-Frejus)                                     | 295 km (Tokai-Kamioka)                                  |
| WC Detector:               | MEMPHYS (440 kt)                                            |                                               | Hyper-K (440 kt)                                        |
| $\langle E_{ u}  angle$ :  | 400 MeV                                                     | 300 MeV                                       | 760 MeV                                                 |
| Channel:                   | $\stackrel{(-)}{\nu}_e \rightarrow \stackrel{(-)}{\nu}_\mu$ | (-<br>V                                       | $\stackrel{(-)}{\mu} \rightarrow \stackrel{(-)}{\nu}_e$ |
| Time $(\nu + \bar{\nu})$ : | (5+5) y                                                     | (2+8) y                                       |                                                         |
| Beam:                      | $\gamma = 100$                                              | $E_p=3.6\;\mathrm{GeV}\;E_p=50\;\mathrm{GeV}$ |                                                         |
|                            | $^{5.8}_{2.2}~10^{18}~^{ m He}_{ m Ne}~{ m dcy/y}$          | 4 MW                                          |                                                         |
| Systematics:               | 2%-5% uncertainty on signal & background                    |                                               |                                                         |

T. Schwetz, NOW2006, Otranto, 15 September 2006 – p.3





Figure 4: Comparison of the fluxes from SPL and  $\beta B.$ 

# CERN-MEMPHYS: Oscillation measurements with v beams main results



# **CERN-MEMPHYS:** mass hierarchy and degeneracies

without

ATM data

for large sin <sup>2</sup>2θ<sub>13</sub> degeneracies and mass hierarchy is possible to be

 $\triangleright$  addition of ATM data leads to a sensitivity to the neutrino mass hierarchy at 2σ CL for sin  $^22\theta_{13} \ge 0.025$  for βB and SPL

> the optimal hierarchy sensitivity is obtained from combining βB + SPL + atmospheric data

> beta beam + ATM can not solve degeneracies (no  $v_{\mu}$  and insufficient spectral info)

super beam + ATM: degeneracies lifted-





resolved

# **MEMPHYS** for nu-factory?

P.Huber and Th.Schwetz, ArXiv:0805:2019

Neutrino Factory: need to distinguish wrong-sign from right-sign muons in the detector to separate the appearance signal  $v_e \to v_\mu$  from the disappearance signal  $v_\mu \to v_\mu$ 

Common solution: magnetised detector (MIND, TASD)

**T.S.@NNN08** 

A large non-magnetized detector IS interesting also in the context of a (low-energy) Neutrino Factory

- Oscillation provides a right sign muon suppression of 1: 10 down to 1: 100, depending on energy resolution
- Statistical  $\nu/\bar{\nu}$  separation: muon lifetime,  $\cos\theta$  distribution, nucleon tagging
- separation efficiencies and purities of 50%-90% allow to use NNN detectors for  $\sin^2 2\theta_{13} \gtrsim 0.004$

A task for WP5

All of this requires detailed simulations and a precise understanding of nuclear effects, detector effects...!

# **R&D towards MEMPHYS: PMm2**



"Innovative electronics for array of photodetectors used in High Energy Physics and Astroparticles".

R&D program funded by French national agency for research (LAL, IPNO, LAPP and Photonis) (2007-2010)

**Basic concept**: very large photodetection surface

→ macropixels of PMTs connected to an autonomous front-end electronics.

Replace large PMTs (20") by groups of 16 smaller ones (12") with central ASIC :

- Independent channels
- charge and time measurement
- water-tight, common High Voltage
- Only one wire out (DATA + VCC)
- I. studies on 12" PMTs design
- parameter correlation
- potting
- pressure resistance (collaboration with BNL since NNN07)
- II. PArISROC readout chip
- complete front-end chip with 16 channels
- testboard now in layout, soon available



# **R&D towards MEMPHYS: MEMPHYNO**

#### Goals:

- 1. full test of electronics and acquisition chain with actual physics events
- 2. trigger threshold studies
- 3. self-trigger mode
- 4. track reconstruction performances
- 5. Gd doping: feasibility and performance (if studies still needed...)

Test bench for photodetection solutions for large detectors



### being installed at APC



# **MEMPHYS** simulations

- Event Generator:
  - NUANCE for v beam, v Atmospheric & Proton Decay
- Simulation:
  - Version 0:
    - adapted by J.E.Campagne from Geant 4 code used by M. Fechner et al. for T2K-WC-2km. The simulation was x-checked using SK & K2K data.

includes Water & PMT & wall reflectivity optical parameters

- Current version 7:
  - Interface with the OpenScientist v16r0 framework (G. Barrand@LAL)
  - 3 modes of running in the same framework:
    - Interactive Viewing, Batch processing, AIDA\_ROOT analysis
  - Event info from MC
  - Primary + non-Optical photons track infos
  - Hits: each PM maintain a list of arrival time of optical photons detected (i.e photo-cathod efficiency)
- Future developments: (work in progress at APC, LAL, LAPP)
  - Code review to improve the geometry implementation, clean up the patches used to adapt the code from T2K-WC to MEMPHYS use case, improve flexibility
  - Implement the electronics simulation
  - Implement a Data Model to be able to do "replay" event-display

# **MEMPHYS** simulations





HEPVis/SoPage

# **MEMPHYS** simulations







Vertex reco algorithm developed Next step: Particle-ID

# **MEMPHYS: MEMPHYNO e-, μ- studies**



Table: MEMPHYNO's PEs per MeV per electron

# **MEMPHYNO** electrons 10 MeV: vertex finding

- ightharpoonup primary vertex fit based only on each PMT's timing info:  $t_{i \, PMT} = t_i + TOF_i => t_i = t_{i \, PMT} TOF_i$ , where  $TOF_i = (n / c) \times D$ , D = distance between each PMT and grid's coordinates
- > maximize estimator E a la SK to find the true vertex of electron :







#### for the primary fit:

- . grid analysis (5cm spacing) in MEMPHYNO
- good resolution for downwards electrons in x-y plane where is the PMTs' module (shown)
- resolution becomes worse as pz/p increases due to one PMTs' module : best for perpendicular electrons

# **MEMPHYNO:** muons 1 GeV

# light propagation effect of OPs:

check correlation of PMT time with distance between muon's exit point and detection PMT's coordinates









- > pz/p = -1 : later produced OPs are detected first
- > pz/p < 0 : relation not clean

# LAr: GLACIER

A scalable detector with a non-evacuable dewar and ionization charge detection with amplification



1 11/3. Nev. D 1-4, 1 12001 (2)

- LAr allows lower threshold than water Cherenkov for most particles
- Comparable performance for low energy electrons

# LAr: Electronic Bubble Chamber

excellent tracking and calorimetric resolution to constrain the final state kinematics and suppress atmospheric neutrino background

- provides high efficiency for v<sub>e</sub> charged current interactions
- high rejection against v<sub>u</sub> NC and CC backgrounds
- ideal for branching mode identification in p decays
- embedded in a magnetic field provides the possibility to measure both wrong sign muons and wrong sign electrons samples in a neutrino factory beam
- unlike WC detectors, detection and reconstruction efficiency does not depend on volume of detector



# LAr-TPC @ CERN-WANF Phys. Rev. D 74, 112001 (2006)



## **GLACIER R&D**

A.Marchionni @NNNN08

Critical issues for construction 
R&D items:

- Drift over long distances in Ar: Ok if high purity purification system
- HV system
- ReadOut system Solution Novel techniques, other than wires, possibly with charge multiplications (double-phase with Large Electron Multiplier)
- Electronics 
   \$\rightarrow\$ Aggressive R&D on warm/cold solutions (IPNL+ETHZ)
  - analog ASIC amplifier working at cryo temperature
     Gygabit Ethernet readout chain + network time
     distribution PTP
- Detector engineering

Prototyping: ArDM [ton-scale], ArTube [long drift]





# **GLACIER** physics reach @ v-beams

Upgraded CNGS (PS+ 50 GeV/c, 200 kW) + GLACIER off-axis





Neutrino Factory + magnetized GLACIER

Nucl. Phys. B 589 577 [hep-ph/0005007] Nucl. Phys. B 631 239 [hep-ph/0112297]





## **LENA**

50 kt Liquid Scintillator + Gd

DETECTOR LAYOUT



Muon Veto
plastic scintifiator panels (on top)
Water Cherenkov Detector
1,500 phototubes
100 kt of water

reduction of fast neutron background

#### Steel Cylinder

height: 100 m, diameter: 30 m 70 kt of organic liquid 13,500 phototubes

#### Buffer

thickness: 2 m non-scintillating organic liquid shielding external radioactivity

#### Nylon Vessel

parting buffer liquid from liquid scintillator

#### **Target Volume**

height: 100 m, diameter: 26 m 50 kt of liquid scintillater

vertical design is favourable in terms of rock pressure and buoyancy forces

## **Physics reach:**

Can be used for low-energy beta-beams

- e/μ separation based on track length and scattering, μ decays
  - => 90% eff. on  $\mu$  with 1% e bkg

Advantage: good energy reconstruction

#### **R&D** towards LENA:

 Gd-doped scintillator: timing, stability

cfr results already achieved in Double Chooz Scaling to very large scale not trivial





# A 1st draft of our workplan (1)

### Physics reach:

- Continue developing Water-Cherenkov simulation, including particle-ID algorithm to make realistic evaluations of efficiencies and background vs threshold
- New input beams for WC, LAr
  - optimize SPL target, optics
  - higher proton energy?
     (cfr WP2 thanks to M.Zito, M.Mezzetto)
- Water-Cherenkov at a Neutrino Factory ? [Huber-Schwetz]
- Possible physics reach at other European underground sites [LAGUNA]
- Possibility of smaller modules at different locations (Europe, USA, Japan)

# A 1st draft of our workplan (2)

### Cost estimate:

- excavation --> LAGUNA
- infrastructure
- tank
- liquids
- purification
- cooling/refrigeration
- photon detectors (for WC, LS)
- readout electronics
- •

PHOTONIS will stop PMT production in July 2009:

- dramatic impact on costs and timescales for PMTs
- more urgent need for alternative photodetection solutions

Need to collaborate with LAGUNA Design Study