

WP4 General & The Beta Beam Accelerator Complex

Elena Wildner for WP4 Layout of talk

EUROnu WP4, Beta Beams: Recall Events Overall Progress CERN Progress Conclusion

The EURISOL scenario

- SPL Based on CERN boundaries Target Beta emitter ion choice: ⁶He and ¹⁸Ne ECR Based on existing technology and machines linac SPS Relativistic gamma is 100 for both ions SPS allows maximum of 150 (⁶He) or 250 (¹⁸Ne) RCS Gamma-choice optimized for physics reach Opportunity to share a Mton Water Cherenkov detector with a CERN super-beam, proton decay studies and a neutrino observatory Achieve an annual neutrino rate of top-down approach 2.9*10¹⁸ anti-neutrinos from ⁶He 1.1 10¹⁸ neutrinos from ¹⁸Ne
- The EURISOL scenario will serve as reference for further studies and developments: Within Eurov we will study ⁸Li and ⁸B

EURISOL scenario

Decay

Recall of Beta Beam scenario, EURISOL

Detector in the Frejus tunnel

Radioactive ion production rates

- ISOL method at 1-2 GeV (200 kW)
 - □ >1 10¹³ ⁶He per second
 - \sim <8 10¹¹ ¹⁸Ne per second
 - Studied within EURISOL
- Direct production
 - □ >1 10¹³ (?) ⁶He per second
 - 1 10^{13} ¹⁸Ne per second
 - □ ⁸Li ?
 - Studied at LLN, Soreq, WI and GANIL
- Production ring
 - □ 10¹⁴ (?) ⁸Li
 - □ >10¹³ (?) ⁸B
 - Will be studied within EUROv
- N.B. Nuclear Physics has limited interest in those elements ->> Production rates not pushed!

Aimed: He 2.9 10¹⁸ (2.0 10¹³/s) Ne 1.1 10¹⁸ (2.0 10¹³/s)

Courtesy M. Lindroos

New approach for ion production

"Beam cooling with ionisation losses" – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487

"Development of FFAG accelerators and their applications for intense secondary particle production", Y. Mori, NIM A562(2006)591

Other optimization possible

Not all directly Euronu mandate

- Overall accelerator chain cycle optimization
- Decay Ring RF (no specific duty cycle needed for higher Q ions)
- Decay Ring layout (shorter arcs)
- Low energy accumulator (profit of cycle dead times for production)
- Multiple charge state LINACs
- Review project with SPS+ (higher gamma)
- Green Field Scenarios
- Carefully follow research and adapt accordingly
 - □ 18Ne/6He production
 - Electron capture beta beams

...

WP4, Beta Beam scenario EUROnu

Cross Section Measurements, INFN LNL

Collection device, UCL

ECR Source

Decay ring Layout and Lattice

WP4, Beta Beam scenario EUROnu

WP4, Beta Beam scenario EUROnu

Associates

Argonne National Laboratory (Multiple charge state LINACs)

Russian Academy of Sciences Institute of Applied Physics (ECR)

PPPL Princeton Plasma Physics Laboratory (Gas Jet Target)

TRIUMF (Decay Ring Simulations, ACCIM beam code, tracking of decaying ions)

Contributions from...

Antoine Chance **Giacomo Deangelis** Francois Debray Pierre Delahaye **Thierry Delbar** Alfredo Ferrari **Christian Hansen** Michael Hass **Frederick Jones** Yacine Kadi Thierry Lamy Mats Lindroos Michel Martini Mauro Mezzetto Semen Mitrofanov Jerry Nolen

Peter Ostroumov Vittorio Palladino Jacques Payet Jürgen Pozimski Carlo Rubbia Achim Stahl **Thomas Thuillier** Andre Tkatchen Christophe Trophime Stefania Trovati Vasilis Vlachoudis Elena Wildner Vladimir Zorin Antoine Lachaize **Elian Bouquerel**

. . . .

Kick-off meeting 23/10/08

AGENDA							
FP7 EUROnu, Beta Beam Workpackage Kickoff-meeting 23/10/08,							
61-1-009 - Room B (Main Building)							
10.00	Welcome E. Wildner, CERN						
10.10	Beta Beams FP7 overview	E.Wildner, CERN					
10.30	Ideas of a beta beam facility at DESY	A. Stahl, Physikalisches					
		Institut Aachen					
11.10	Physics with beta beams, requirements and wishes	M.Mezzetto, INFN, Padova					
12.00	Lunch						
14.00	Decay Ring for 8B and 8Li: lattice	A. Chance, CEA					
14.20	60 GHz ECR ion source for RIB's production	L. Latrasse, LPSC					
14.40	High Field Magnets	F. Debray, GHMFL, LCMI					
15.00	8B and 8Li in the RCS	A. Lachaize, CNRS					
15.20	Coffee						
15.40	LNL plans for production cross section	G. Prete, INFN, LNL					
	measurements						
16.00	Radioprotection (including equipment protection)	S. Trovati, CERN					
16.20	High Yield Production of 6He and 8Li RIB	T. Hirsch, Weizmann Institute					
	forNeutrino Physics						
16.40	End						

Deliverables

Task Name	Year 1				Year 2			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
WP4 Beta-Beam								
Collection device construction							3	
Bunching performance evaluation								
Validation of collection device								
Final report								

Milestones

List and schedule of milestones						
Milestone no.	Milestone name	WPs no's.	Lead beneficiary	Delivery date	Comments	
4.1	Baseline Beta-Beam scenario	4	3	12	Documentation reviewed	
4.2	Design of collection device	4	15	15	Drawings qualified by external expert	
4.3	Lattice frozen for production ring	4	3	18	Optics qualified by external expert	
4.4	New decay ring optics for ⁸ Li and ⁸ B	4	3	21	Optics qualified by external expert	
1.3	Review on interim milestones, deliverables & costs	All	1	24	Reviewed by Governing Board	
4.5	Interim report on reaction channels, collimation and magnet protection	4	3	24	Report reviewed	
6.3	Scenarios for the B and Li Beta Beams	6,4	6	24	Report reviewed	
6.4	Physics performance of all facilities with update of fluxes	6,5,4	6	24	Report reviewed	
4.6	Full simulation of production ring	4	2	36	Simulation results reviewed	
6.6	Comparison of physics performance of all facilities	6,2,3,4,5	6	43	Report reviewed	

Progress and Plans CERN

- Review of baseline design, ongoing
 - PS2 integration (minimum)
 - RCS
 - Overall cycle and bunch structure
- Relax of requirements of bunch structure in the Decay Ring
 - Barrier buckets in Decay Ring
 - Bunch structure of preceding accelerators
- Production ring
 - Selection of staffing ongoing
- Parameter list
 - Database structure and setup, ongoing
 - □ Filling, depending on baseline review, being prepared
- Decay Ring Superconducting Magnets
 - Open mid-plane dipole and quadrupole design has been done (energy deposition and radiation checks with 8B and 8Li beam remaining)

Dependencies

- ECR source
 - Specification of beam parameters after source
- RCS
 - Depends on PS2 integration, extraction energy, bunching and cycling
- Decay Ring Layout
 - Magnet layout
 - Injection (barrier buckets)
 - Collimation (barrier buckets)
 - □ RF
- Collection device
 - Production Ring Simulations
- Radio Protection Studies
 - Decay Ring Layout and RF
 - RCS design (Injection Chopper)
 - PS2

Relaxing the duty-cycle for higher energy neutrinos

Open midplane superconducting magnets for decay ring

- Design ok for the present layout of the decay ring
- check for energy deposition
- radio protection (B and Li)
- check if larger apertures with liner a better option

Acknowledgments (magnet design, cryostating, cryogenics):

Jens Bruer, F Borgnolutti, P. Fessia, R. van Weelderen , L. Williams and E. Todesco (CERN)

Three designs, Decay Ring Dipole

Design	1	2	3
Aperture radius (mm)	60	90	60
B _{ss} at 1.9 K (T)	6.5	6.8	8.7
Operational field at 1.9 K (T)	5.2	5.5	7.0
B _{ss} at 4.2 K (T)	4.9	5.3	6.7
Operational field at 4.2 K (T)	4.0	4.2	5.4
Gap in midplane (mm)	8.9	12.5	8.7
Yoke (mm)	180	270	240

Courtesy Jens Bruer

Cost estimation, Decay Ring Dipole

 For magnet fabrication and assembling, calculated for a 13 m long dipole

Requires 1.9K !!

Cost (MCHF per unit)	Design 1	Design 2	Design 3
Magnet (material + fabrication)	0.71	0.76	0.82
Cryostat	0.1	0.1	0.1
Cryoplants at 1.9 K	0.3	0.3	0.3
Cryoplants at 4.5 K	0.2	0.2	0.2
Total at 4.5 K	1.01	1.06	1.12
Total at 1.9 K	1.11	1.16	1.22

Decay ring quadrupole

- In a quadrupole beam losses are mainly located in the mid-plane:
 - Damage the superconducting cable
 - Might lead to a quench

- To avoid the peak of the heat deposition an open mid-plane can be inserted
 - How is the field strength affected by insertion of an open mid-plane?

Courtesy Franck Borgnolutti

Open mid-plane quadrupole

- We consider a quadrupole made of 2 pure sector blocks of the LHC main dipole cable.
- Ironless coil is assumed.

- Aperture diameter corresponding to a nominal gradient of 42 T/m with 20 % margin from the quench:
 - 2° opening : 230 mm
 - a 4° opening : 200 mm
 - □ 6° opening : 160 mm
- Alternative to open mid-plane: thick liners

Parameters on the Web for 8B and 8Li

Conclusion

- For deliverables and milestones we have no immediate risks
 - UCL has some delay (see presentation by Semen Mitrofanov)
 - CERN has to deliver baseline scenario fall of this year