

## **OPERA Status**

### (yesterday - today: neutrino detection)



Luca Stanco\* - INFN Padova

\* on behalf of OPERA Collaboration



# The experimental challenge of direct detection of TAU's appearance

- LongBaseLine experience in Europe (CNGS)
- "Modern" Nuclear Emulsion Technique (OPERA Detector)
- RUNS from 2006 to 2008, from DAQ to submicrometric measures: what we have learned, what we are learning
- Expectations for 2009 and 2010



- 2006 Pilot run: after commissioning in Aug, no follow-up in October due to a problem in the cooling of one horn. Moreover, no bricks in OPERA
- 2007: Major problems in the radiation shielding of the ventilation system.
   Only 8.10<sup>17</sup> pot. Significant interventions during winter shutdown.
- 2008 OPERA fully operational (see below). Performance of the CERN injection complex poor at beginning but steadily improving.
- After the LHC accident, further increase of the integrated intensity for OPERA (duty cycle  $37.5\% \rightarrow 83\%$ ).



#### The 2008 run was the first long physics run for the CNGS

### CNGS Run 2008: 18 June- 03 Nov 2008





### ... for tau neutrino CC detection ! $\begin{cases} \mu^{-} \nu_{\tau} \overline{\nu}_{\mu} & \text{B. R.} \sim 17\% \\ h^{-} \nu_{\tau} n(\pi^{\circ}) & \text{B. R.} \sim 50\% \\ e^{-} \nu_{\tau} \overline{\nu}_{\epsilon} & \text{B. R.} \sim 18\% \end{cases}$ CC interaction $v_{\tau} + N \rightarrow \tau^- + X$ $\nu_{\mu}$ oscillation $\pi^{+} \pi^{-} \pi^{-} \nu_{\tau} n(\pi^{\circ})$ B. R. ~ 14% Decay "kink" $c\tau \sim 87 \ \mu m$ Vµ $v_{\tau}$ oscillation ( $\approx$ 600 µm of path) γςτ (with $\approx$ 35% of Non-Scaling QE and 65% DIS) Vµ $v_{\mu}$ no-oscillation (with $\approx$ 11% of Non-Scaling QE and 89% DIS)

### The OPERA principle

### **OPERA** adopts the ECC concept (Emulsion Cloud Chamber):



Track reconstruction accuracy inside emulsion layers:  $\Delta x \approx 1 \mu m$   $\Delta \theta \approx 1 m rad$ 

"BRICK" arrangment:

- 57 emulsion sets
- 56 Pb layers



Plus 2 external emulsion sets for "interplay" with Electronics Data, arranged in a white plastic cover





Luca Stanco - Padova

**OPERA Status - IDS-NuFact2009** 





#### Short physics run (~40% target) 0.824\*10<sup>18</sup> **pot** 31.5 ± 6 expected events in bricks 38 events registered in the target (29 CC-like and 9 NC-like)

Out of target interactions (rock muons, vtx in the spectrum) 331 events passed the analysis cut 303 expected

### First test on real neutrino interactions for Brick handling, Film Processing, Scanning

Unfortunately statistics has been limited: ANALYSIS with 2008 RUN...









### The completion of the OPERA construction<sup>(\*)</sup>

OPERA is based on the only proven technology (DONUT) to identify  $v_{\tau}$  on an event-by-event basis (nucl.emuls.&lead driven by real time detectors). It will be celebrated as a major engineering achievement since it brought such technology to an **immense size** (1.25 kton)





OPERA is an **hybrid detector** built running in parallel with several ancillary facilities that - <u>before 2008</u> – hadn't been validated at nominal speed, yet



Luca Stanco - Padova

**OPERA Status - IDS-NuFact2009** 



### $\mathbf{A} \blacksquare_{\mathbf{O}}$ quasi-elastic CC interaction





## W-



 $\bigcirc$ 



Luca Stanco - Padova

**OPERA Status - IDS-NuFact2009** 

20



### **OPERA:** tau physics search potential

Full mixing, 5 years run,  $4.5 \times 10^{19}$  pot / year and M<sub>D</sub> = 1.3 Kton Efficiency before  $\tau$  identification:  $\epsilon_{\text{trigger}} \ge \epsilon_{\text{brick}} \ge \epsilon_{\text{geom}} \ge \epsilon_{\text{vertex location}} = 99\% \ge (270\%) \ge 94\% \ge 90\%$ 

| τ decay<br>channels   | ٤(%)  | BR(%) | Sig                                                   |                                                       |            |
|-----------------------|-------|-------|-------------------------------------------------------|-------------------------------------------------------|------------|
|                       |       |       | $\Delta m^2$<br>=2.5x10 <sup>-3</sup> eV <sup>2</sup> | $\Delta m^2$<br>=3.0x10 <sup>-3</sup> eV <sup>2</sup> | Background |
| $\tau \to \mu$        | 17.5  | 17.7  | 2.9                                                   | 4.2                                                   | 0.17       |
| $\tau  ightarrow$ e   | 20.8  | 17.8  | 3.5                                                   | 5.0                                                   | 0.17       |
| τ → h                 | 5.8   | 49.5  | 3.1                                                   | 4.4                                                   | 0.24       |
| $\tau \rightarrow 3h$ | 6.3   | 15    | 0.9                                                   | 1.3                                                   | 0.17       |
| ALL                   | ε×BR= | 10.6% | 10.4                                                  | 14.9                                                  | 0.75       |

Expected backgrounds:

- Charmed particles produced in  $v_{\mu}$  CC and NC interaction
- Hadron reinteractions in lead
- Large angle  $\mu$  scattering: muons produced in  $\nu_{\mu}$  CC events
- $\pi^0$  mis-identification

Occur if primary muon is not detected and possible wrong charge measurement of secondary muon. Muon ID is very crucial issue for the experiment!

. . .

### **OPERA path: from DAQ to Event Analysis**

- **Trigger** + select "on time" event with CNGS
- Electronic detectors information are processed by a software reconstruction program (*brick finding* algorithm) that selects the brick with the highest probability to contain the neutrino interaction vertex
- The brick is removed by *BMS* and exposed to *(frontal) X-rays* to ensure a common reference system between CSd and brick
- The CSd is separated from the brick, developed and analysed in one of the two *Scanning Stations*, located in Europe (LNGS) and in Japan (Nagoya)
- If any track related to the event is found in the CSd, the brick is exposed to *(lateral) X-rays* beam and to *cosmic rays* for sheets alignment. The brick is disassembled and the emulsion films are *developed* and sent to one of the scanning labs
- Tracks found in the CSd are searched for in the most downstream film of the brick and followed (*scan-back*)
- A *volume scan* around the neutrino interaction is performed and the neutrino vertex is confirmed
- The scanning lab stores the information about the brick in a local *database*. Information are then copied in one of the two synchronized central databases
- The events are analyzed *off-line* and tau is searched, by accessing to the database

### OPERA automatic path along the run

![](_page_23_Figure_1.jpeg)

- ~25 brick/day
- ~200 cm<sup>2</sup>/event

Nuclear emulsion are analysed with a new generation of high speed automatic systems:

~40 microscopes currently available in Japan (S-UTS) and Europe (ESS)

ALL THAT with a current scanning speed of 20 cm<sup>2</sup>/h (ESS) to reach 100 cm<sup>2</sup>/h (S-UTS)

### **Event Reconstruction**

#### **CSd** general scan:

- 50 cm<sup>2</sup> around TT prediction
- looking for tracks in all the available angular range (typically ±400 mrad)  $\nu_{\mu}$
- X –ray alignment ( $10\mu m$  accuracy)
- tolerances 40  $\mu$ m, 10 mrad ( $\theta$ =0)
- Compton alignment (1µm accuracy)

#### Scan back:

- alignment with lateral X-ray marks  $(12 \,\mu\text{m accuracy})$
- definition of the stopping point

![](_page_24_Picture_10.jpeg)

![](_page_24_Figure_11.jpeg)

57

![](_page_24_Figure_12.jpeg)

![](_page_24_Figure_13.jpeg)

Luca Stanco - Padova

**OPERA Status - IDS-NuFact2009** 

**CSd** 

### OPERA as a real-time detector

#### 2008 RUN

OK

[Negligible

bkg from

cosmics]

OK

- CNGS-LNGS syncronization: based on GPS. Present precision is 100 ns (can be improved up to 10 ns)
- DAQ livetime >99%. Overall livetime during CNGS 99%
- Collected events correlated with CNGS: 10122 on time (mainly in surrounding material) and 1663 in the target
- Direction and momentum reconstruction for CNGS event

![](_page_25_Figure_6.jpeg)

### **OPERA** as a hybrid detector

- Prediction of the brick where the interaction occurred
- Alignment and development of the Changeable Sheets
- Scanning of the Changable Sheets
- Extraction of the Bricks at the rate of CNGS events
- Identification of the primary vertex
- Kinematic reconstruction and decay search

![](_page_26_Figure_7.jpeg)

![](_page_26_Figure_8.jpeg)

![](_page_26_Figure_9.jpeg)

![](_page_26_Figure_10.jpeg)

(\*) Extr. of 1° brick nearly completed. 2° in progress.

Luca Stancor spadovalits below on a subsanoper Status - IDS NuFact2009

### **2008 Run: vertex location summary**

#### Events analysis (European set only) @ March 5th 2009

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_0.jpeg)

### SPS start-up CNGS beam for Physics RUN: 2009 May 21<sup>st</sup>

| PSB S<br>with B | Start PS Steam with | Start<br>Beam <sub>Bean</sub><br>Isol | Isolde<br>Physics<br>n to <sup>Start</sup> | East H<br>Star<br>SPS Start<br>vith Beam | all<br>LHC TI<br>North Are<br>& CNGS<br>Setup | North Are<br>Physics<br>a Start<br>S May | a LHC<br>Beam<br>available | AD Star<br>with Bea<br>CNGS<br>/Physics<br>Start | t Start<br><sup>m</sup> nToF<br>Setup | Start /<br>Physi<br><b>June</b> | AD<br>cs | Source and<br>Linac3 Star | l<br>t |
|-----------------|---------------------|---------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------|--------------------------------------------------|---------------------------------------|---------------------------------|----------|---------------------------|--------|
| Wk              | \ 14                | 15                                    | 16                                         | 17                                       | 18                                            | 19                                       | þø                         | 21                                               | 22                                    | 23                              | 24       | 25                        | 26     |
| Мо              | 30                  | sks<br>•                              | Easter 13                                  | 20                                       | 21                                            | 4                                        |                            | 18                                               | Injector Stop<br>25                   | Whit. 1                         | ê        | 15                        | 22     |
| Tu              |                     | Chee                                  | Inc. Controls                              | Controls Studies                         |                                               |                                          |                            |                                                  |                                       |                                 |          | Injector                  |        |
| We              | Controls Studies    | MH                                    | Studies                                    |                                          |                                               |                                          |                            |                                                  |                                       |                                 |          | MD                        |        |
| Th              | ut                  | SPS                                   | e                                          |                                          |                                               |                                          |                            | Ascension                                        |                                       |                                 |          |                           |        |
| Fr              | Mach<br>ecko        | G. Friday                             | achin                                      |                                          | 1 May                                         |                                          |                            |                                                  |                                       |                                 |          |                           |        |
| Sa              | PS I<br>Ch          |                                       | PS M<br>Ched                               |                                          |                                               |                                          |                            |                                                  |                                       |                                 |          |                           |        |
| Su              |                     |                                       | S                                          |                                          |                                               |                                          |                            |                                                  |                                       |                                 |          |                           |        |

### **RUN 2009** expectations

173 days
48s supercycle
80% efficiency
2.4<sup>E</sup>13 pot/extraction

→3.6<sup>E</sup>19 pot
→3500 events of ru interactions

Efforts needed for improving this performance.

UN 2010 expectations

With 2008-10 runs we may be able to exclude tau appearance with a reasonable probability

OR

at a not so large probab. to confirm tau appearance

 $\rightarrow$ 450 nu interactions in OPERA bricks

### Conclusions

### **OPERA** challenges:

- 1) from cm to micron precisions
- 2) Intimate interplay of "standard" and "subtleties" technologies
- 3) Industrial activities not only at construction time but even heavier at analysis stage
- 4) Detector operativeness" will not last for years...

### OPERA goals:

- 1) tau's evidence
- 2) tau's oscillation confirmation
- 3) Ancillary results on charm and cosmics
- 4) Confirm the unexpected !

### Good Physics Searches to everybody !

## **Backup Slides**

#### CNGS beam @ CERN:

![](_page_33_Figure_1.jpeg)

Proton extractions from SPS with 3 cycles of 6s each : 2 extractions of 10.5 µs, separated by 50 ms.

![](_page_33_Figure_3.jpeg)

Nominal intensity : 4.5 10<sup>19</sup> pot /yr, with 2.4 10<sup>13</sup> pot/extraction (FE)

Luca Stanco - Padova

**OPERA Status - IDS-NuFact2009** 

## Time selection of beam events

![](_page_34_Figure_1.jpeg)

GPS Time Stamp resolution ~ 100 ns

Luca Stanco - Padova