Neutrino masses and LHC

Thomas Schwetz

Max-Planck-Institute for Nuclear Physics, Heidelberg

Within the Standard Model neutrinos are massless.

We know from oscillation experiments that neutrinos do have mass.

 \Rightarrow Neutrino mass implies physics beyond the SM.

Within the Standard Model neutrinos are massless.

We know from oscillation experiments that neutrinos do have mass.

 \Rightarrow Neutrino mass implies physics beyond the SM.

Can we learn something about the new physics responsible for neutrino mass at LHC?

G. Senjanovic, J. Phys. Conf. Ser. 136 (2008) 072039 fe Datta and S. Poddar, 9901.1619 Z. Z. Xing, 0901.0209 S. Blanchet, Z. Chacko and R. N. Mohapatra, 0812.3837 P. Fileviez Perez,

T. Han, T. Li and M. J. Ramsey-Musolf, 0810.4138 F. del Aguila and J. A. Aguilar-Saavedra, Phys. Lett. B 672 (2009) 158 T. Ibrahim and P. Nath, Phys. Rev. D 78 (2008) 075013 P. Fileviez Perez, T. Han, G. y. Huang, T. Li and K. Wang, Phys. Rev. D 78 (2008) 015018 S. Gabriel, B. Mukhopadhyaya, S. Nandi and S. K. Rai, Phys. Lett. B 669 (2008) 180 F. de Campos et al. Phys. Rev. D 77 (2008) 115025 P. Fileviez Perez, T. Han, G. Y. Huang, T. Li and K. Wang, Phys. Rev. D 78 (2008) 071301 S. Bar-Shalom, G. Eilam, T. Han and A. Soni, Phys. Rev. D 77 (2008) 115019 A. G. Akeroyd, M. Aoki and H. Sugiyama, Phys. Rev. D 77 (2008) 075010 J. Garayoa and T. Schwetz, JHEP 0803 (2008) 009 C. S. Chen, C. Q. Geng, J. N. Ng and J. M. S. Wu, JHEP 0708 (2007) 022 T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Phys. Rev. D 76 (2007) 075013 J. Kersten and A. Y. Smirnov, Phys. Rev. D 76 (2007) 073005 A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane, Nucl. Phys. B 787 (2007) 198 F. M. L. de Almeida et al., Phys. Rev. D 75 (2007) 075002 S. Bray, J. S. Lee and A. Pilaftsis, Nucl. Phys. B 786 (2007) 95 L. D. Ninh and L. N. Hoang, Phys. Rev. D 72 (2005) 075004 W. Porod and P. Skands, hep-ph/0401077. S. N. Gninenko, M. M. Kirsanov, N. V. Krasnikov and V. A. Matveev, hep-ph/0301140. A. Ali, A. V. Borisov and N. B. Zamorin, Eur. Phys. J. C 21 (2001) 123 E. Fernandez, Nucl. Phys. Proc. Suppl. 31 (1993) 326. A. Datta, M. Guchait and D. P. Roy, Phys. Rev. D 47 (1993) 961 J. N. Esteves et al. 0903.1408 A. Villanova del Moral, 0810.3270 I. Gogoladze, N. Okada and Q. Shafi, Phys. Lett. B 672, 235 (2009) F. del Aguila and J. A. Aguilar-Saavedra, Nucl. Phys. B 813, 22 (2009) M. Hirsch, S. Kaneko and W. Porod, Phys. Rev. D 78, 093004 (2008) M. Hirsch et al., Phys. Rev. D 78, 013006 (2008) I. Gogoladze, N. Okada and Q. Shafi, Phys. Rev. D 78, 085005 (2008) B. Bajc, M. Nemevsek and G. Senjanovic, Phys. Rev. D 76, 055011 (2007) T. Schwetz, EURO ν , CERN, Mar 2009 – p. 3 B. Bajc and G. Senjanovic, JHEP 0708, 014 (2007)

G. Senjanovic, J. Phys. Conf. Ser. 136 (2008) 072039 fe Datta and S. Poddar, 9901.1619 Z. Z. Xing, 0901.0209 S. Blanchet, Z. Chacko and R. N. Mohapatra, 0812.3837 P. Fileviez Perez,

T. Han, T. Li and M. J. Ramsey-Musolf, 0810.4138 F. del Aguila and J. A. Aguilar-Saavedra, Phys. Lett. B 672 (2009) 158 T. Ibrahim and P. Nath, Phys. Rev. D 78 (2008) 075013 P. Fileviez Perez, T. Han, G. y. Huang, T. Li and K. Wang, Phys. Rev. D 78 (2008) 015018 S. Gabriel, B. Mukhopadhyaya, S. Nandi and S. K. Rai, Phys. Lett. B 669 (2008) 180 F. de Campos et al. Phys. Rev. D 77 (2008) 115025 P. Fileviez Perez, T. Han, G. Y. Huang, T. Li and K. Wang, Phys. Rev. D 78 (2008) 071301 S. Bar-Shalom, G. Eilam, T. Han and A. Soni, Phys. Rev. D 77 (2008) 115019 A. G. Akeroyd, M. Aoki and H. Sugiyama, Phys. Rev. D 77 (2008) 075010 J. Garayoa and T. Schwetz, JHEP 0803 (2008) 009 C. S. Chen, C. Q. Geng, J. N. Ng and J. M. S. Wu, JHEP 0708 (2007) 022 T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Phys. Rev. D 76 (2007) 075013 J. Kersten and A. Y. Smirnov, Phys. Rev. D 76 (2007) 073005 A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane, there is a huge literature eida et al., Phys. Rev. D 75 (2007) 075002 S. Bray, J. S. Lee and A. Filansis, Nucl. Filys. B 700 (2007) 95 L. D. Ninh and L. N. Hoang, Phys. Rev. D 72 (2005) 075004 W. Porod and P. Skands, hep-ph/0401077. S I will be very sloppy with citations and apologize for omissions. A. V. Borisov and N. B. Zamorin, Eur. Phys. J. C 21 (2001) 123 E. Fernandez, Nucl. Phys. Proc. Suppl. 31 (1993) 326. A. Datta, M. Guchait and D. P. Roy, Phys. Rev. D 47 (1993) 961 J. N. Esteves et al. 0903.1408 A. Villanova del Moral, 0810.3270 I. Gogoladze, N. Okada and Q. Shafi, Phys. Lett. B 672, 235 (2009) F. del Aguila and J. A. Aguilar-Saavedra, Nucl. Phys. B 813, 22 (2009) M. Hirsch, S. Kaneko and W. Porod, Phys. Rev. D 78, 093004 (2008) M. Hirsch et al., Phys. Rev. D 78, 013006 (2008) I. Gogoladze, N. Okada and Q. Shafi, Phys. Rev. D 78, 085005 (2008) B. Bajc, M. Nemevsek and G. Senjanovic, Phys. Rev. D 76, 055011 (2007) B. Bajc and G. Senjanovic, JHEP 0708, 014 (2007) T. Schwetz, EURO ν , CERN, Mar 2009 – p. 3

Weinberg 1979: there is one dim-5 operator in the SM, which will lead to a Majorana mass term for neutrinos after EWSB:

$$\frac{L^T \tilde{\phi}^* \, \tilde{\phi}^\dagger L}{\Lambda} \quad \longrightarrow \quad m_\nu \sim \frac{v^2}{\Lambda}$$

This implies that the physics responsible for neutrino masses lives at the very high scale

 $\Lambda \sim 10^{14}\,{\rm GeV}$

which is impossible to probe at LHC or any other imaginable collider experiment.

Maybe the BSM physics expected^a around TeV and searched for at LHC can also be responsible for the generation of neutrino masses:

\Rightarrow TeV scale neutrino mass models

Generically in such models seesaw suppression is not sufficient, one needs additional means to obtain small neutrino masses:

- putting small numbers by hand
- cancellations between large terms
- radiative neutrino masses

[•]

^astabilizing the Higgs mass, Dark Matter,...

3 realizations of the Weinberg operator:

UV completion by

- Type I: fermionic singlet (right-handed neutrinos)
- Type II: scalar triplet
- Type III: fermionic triplet

What happens if these new particles do not have masses of order 10^{14} GeV but only few 100 GeV, within the LHC reach?

e.g., Han, Zhang, 06; Del Aguila, Aguilar-Saavedra, Pittau 07; Kersten Smirnov 07; ... see also talk by S. Pascoli

 \Rightarrow dilepton (or multi-lepton) events, e.g.:

lepton number violating: $\ell^{\pm}\ell^{\pm} + \text{jets}$ or lepton flavour violating: $\ell^{\pm}_{\alpha}\ell^{\mp}_{\beta} + \text{jets}$

Type I seesaw at LHC

$$m^{\nu}_{\alpha\beta} = v^2 \sum_i \frac{Y_{\alpha i} Y_{\beta i}}{M_i}$$

If heavy neutrino masses M_i are not so heavy there are two possibilities to obtain small neutrino masses:

- 1. small Yukawas $Y_{\alpha i} \sim 10^{-6}$ (electron Yukawa)
- 2. cancellations in the sum over N_i

Buchmüller, Wyler, 1990; Pilaftsis, 1992

Type I seesaw at LHC

$$m^{\nu}_{\alpha\beta} = v^2 \sum_i \frac{Y_{\alpha i} Y_{\beta i}}{M_i}$$

If heavy neutrino masses M_i are not so heavy there are two possibilities to obtain small neutrino masses:

- 1. small Yukawas $Y_{\alpha i} \sim 10^{-6}$ (electron Yukawa)
- 2. cancellations in the sum over N_i

add 1: since N_i are SM singlets they interact only via Yukawas \Rightarrow tiny Yukawas imply negligible production rate at LHC.

Type I seesaw at LHC

$$m^{\nu}_{\alpha\beta} = v^2 \sum_i \frac{Y_{\alpha i} Y_{\beta i}}{M_i}$$

If heavy neutrino masses M_i are not so heavy there are two possibilities to obtain small neutrino masses:

- 1. small Yukawas $Y_{\alpha i} \sim 10^{-6}$ (electron Yukawa)
- 2. cancellations in the sum over N_i

add 2: cancellations could be motivated by symmetries, but decouple LHC signatures from light neutrino mass matrix Kersten, Smirnov, 07

Seesaw at LHC with tiny Yukawas

Way out: give N_i gauge interaction, such that new production channels at LHC open:

• Low scale Left-Right symmetry $q\bar{q} \rightarrow W_R \rightarrow N\ell \rightarrow \ell\ell$ + jets

e.g., Keung, Senjanovic, 1983

• Type II seesaw: $N \to \Delta$ scalar triplet $q\bar{q} \to Z^0(\gamma) \to \Delta^{--}\Delta^{++} \to \ell^- \ell^- \ell^+ \ell^+$

see below

• Type III seesaw: $N \to T$ fermionic triplet $q\bar{q} \to W^- \to T^- T^0 \to \ell^- \ell^-$ + jets

e.g., Bajc, Senjanovic, 07; Franceschini, Hambye, Strumia, 08

• provide some new BSM interaction for N

Other examples of TeV scale ν masses

R-parity violating SUSY: neutrino mass generation is related to lepton number violating terms in superpotential ⇒ can study neutrino properties by observing *R*-parity violating decays of the LSP (neutralino) at LHC

Hirsch, Porod, Romao, Valle, Dedes, Allanach, many many others

Other examples of TeV scale ν masses

R-parity violating SUSY: neutrino mass generation is related to lepton number violating terms in superpotential ⇒ can study neutrino properties by observing *R*-parity violating decays of the LSP (neutralino) at LHC

Hirsch, Porod, Romao, Valle, Dedes, Allanach, many many others

• radiative neutrino mass generation, ex.: Zee-Babu

Other examples of TeV scale ν masses

R-parity violating SUSY: neutrino mass generation is related to lepton number violating terms in superpotential ⇒ can study neutrino properties by observing *R*-parity violating decays of the LSP (neutralino) at LHC

Hirsch, Porod, Romao, Valle, Dedes, Allanach, many many others

 radiative neutrino mass generation, ex.: Zee-Babu good prosprects to see doubly-charged scalar at LHC → like-sign lepton events; if k⁺⁺ is within reach for LHC the model is tightly constrained by perturbativity requirements and bounds from LFV

Babu, Macesanu, 02; Aristizabal, Hirsch, 06; Nebot et al., 07

The Higgs triplet model and LHC

(I prefer not to call it Type-II seesaw)

based on J. Garayoa and T. Schwetz, JHEP 0803 (2008) 009 [0712.1453]

other recent works:

A. Hektor et al., Nucl. Phys. B 787 (2007) 198 [0705.1495].

T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Phys. Rev. D 76 (2007) 075013 [0706.0441].

- A. G. Akeroyd, M. Aoki and H. Sugiyama, Phys. Rev. D 77 (2008) 075010 [0712.4019].
- M. Kadastik, M. Raidal and L. Rebane, Phys. Rev. D 77 (2008) 115023 [0712.3912].
- P. Fileviez Perez et al., Phys. Rev. D 78 (2008) 015018 [0805.3536].

add a triplet Δ under SU(2)_L to the SM:

$$\mathcal{L}_{\Delta} = f_{ab} L_a^T C^{-1} i au_2 \Delta L_b + \mathsf{h.c.} \,,$$

$$\Delta = \begin{pmatrix} H^+/\sqrt{2} & H^{++} \\ H^0 & -H^+/\sqrt{2} \end{pmatrix}$$

The VEV of the neutral component $\langle H^0 \rangle \equiv v_T / \sqrt{2}$ induces a Majorana mass term for the neutrinos:

$$\frac{1}{2}\nu_{La}^T C^{-1} m_{ab}^{\nu} \nu_{Lb} + \text{h.c.}$$
 with $m_{ab}^{\nu} = \sqrt{2} v_T f_{ab}$

$$m_{ab}^{\nu} = \sqrt{2} v_T f_{ab} \lesssim 10^{-10} \,\mathrm{GeV}$$

Neutrino masses are small because of

- a small triplet VEV v_T
- small Yukawas f_{ab}
- or a combination of these two

Neutrino masses

$$m_{ab}^{\nu} = \sqrt{2} v_T f_{ab} \lesssim 10^{-10} \,\mathrm{GeV}$$

Lepton number violating term in Higgs potential: $\mu \phi^{\dagger} \Delta \tilde{\phi}$ minimisation of the potential gives

$$v_T \sim \mu \frac{v^2}{M_\Delta^2}$$

$$m_{ab}^{\nu} = \sqrt{2} v_T f_{ab} \lesssim 10^{-10} \,\mathrm{GeV}$$

Lepton number violating term in Higgs potential: $\mu \phi^{\dagger} \Delta \phi$ minimisation of the potential gives

$$v_T \sim \mu \frac{v^2}{M_\Delta^2}$$

Type II seesaw: heavy triplet

 $\mu \sim M_{\Delta} \sim 10^{14} \,\text{GeV} \qquad \Rightarrow \qquad v_T \sim m^{\nu} \,, \, f_{ab} \sim \mathcal{O}(1)$

$$m_{ab}^{\nu} = \sqrt{2} v_T f_{ab} \lesssim 10^{-10} \,\mathrm{GeV}$$

Lepton number violating term in Higgs potential: $\mu \phi^{\dagger} \Delta \tilde{\phi}$ minimisation of the potential gives

$$v_T \sim \mu \frac{v^2}{M_\Delta^2}$$

if we want to see the triplet at LHC we need a light triplet: $M_{\Delta} \sim v \sim 100 \,\text{GeV} \Rightarrow v_T \sim \mu$ light neutrinos require a small μ put "by hand" (technically natural \rightarrow Lepton number)

$$pp \to Z^*(\gamma^*) \to H^{++}H^{--} \to \ell^+\ell^+\ell^-\ell^-$$

doubly charged component of the triplet:

$$\Delta = \begin{pmatrix} H^+/\sqrt{2} & H^{++} \\ H^0 & -H^+/\sqrt{2} \end{pmatrix}$$

very clean signature:

two like-sign lepton paris with the same invariant mass and no missing transverse momentum

practically no SM background

$$pp \to Z^*(\gamma^*) \to H^{++}H^{--} \to \ell^+\ell^+\ell^-\ell^-$$

promising production rate: Han, Mukhopadhyaya, Si, Wang, 0706.0441

remember:
$$\mathcal{L}_{\Delta} = f_{ab} L_a^T C^{-1} i \tau_2 \Delta L_b$$
, $m_{ab}^{\nu} = \sqrt{2} v_T f_{ab}$

$$\Gamma(H^{++} \to \ell_a^+ \ell_b^+) = \frac{1}{4\pi (1+\delta_{ab})} |f_{ab}|^2 M_{H^{++}},$$

 \Rightarrow Decays of doubly charged Higgs are proportional to the elements of the neutrino mass matrix!

other decay channels of the doubly-charged Higgs:

 $\begin{array}{c}
H^{++} \to H^{+}H^{+} \\
H^{++} \to H^{+}W^{+} \\
H^{++} \to W^{+}W^{+}
\end{array}$

The first two decay modes depend on the mass splitting within the triplet \rightarrow assume that they are kinematically suppressed.

other decay channels of the doubly-charged Higgs:

 $\begin{array}{c} H^{++} \rightarrow H^{+}H^{+} \\ H^{++} \rightarrow H^{+}W^{+} \\ H^{++} \rightarrow W^{+}W^{+} \end{array}$

rate for the WW mode depends on triplet VEV v_T

$$\Gamma(H^{++} \to W^+W^+) \approx v_T^2 M_{H^{++}}^3 / (2\pi v^4)$$

 $\operatorname{require}\, \Gamma(H^{++} \to W^+W^+) \lesssim \Gamma(H^{++} \to \ell_a^+ \ell_b^+) \quad \Rightarrow \quad$

$$\frac{v_T}{v} \lesssim 10^{-6} \left(\frac{100 \,\text{GeV}}{M_{H^{++}}}\right)^{1/2}$$

 \rightarrow save from LEP EW precision tests

Range for Yukawas and triplet VEV

bounds on LFV constrain triplet Yukawas f_{ab} most stringent from $\mu \rightarrow eee$ (tree level in this model)

$$4 \times 10^{-7} \left(\frac{M_{H^{++}}}{100 \,\mathrm{GeV}}\right)^{1/2} \lesssim f_{ab} \lesssim 5 \times 10^{-4} \left(\frac{M_{H^{++}}}{100 \,\mathrm{GeV}}\right)$$

and with $v_T f_{ab} \sim 0.1 \,\mathrm{eV}$:

$$0.2 \,\mathrm{keV} \left(\frac{M_{H^{++}}}{100 \,\mathrm{GeV}}\right)^{-1} \lesssim v_T \lesssim 0.2 \,\mathrm{MeV} \left(\frac{M_{H^{++}}}{100 \,\mathrm{GeV}}\right)^{-1/2}$$

The branchings $H^{++} \rightarrow \ell_a^+ \ell_b^+$

$$m_{ab}^{\nu} = \sqrt{2} v_T f_{ab}, \quad \Gamma(H^{++} \to \ell_a^+ \ell_b^+) = \frac{1}{4\pi (1+\delta_{ab})} |f_{ab}|^2 M_{H^{++}},$$

$$\mathsf{BR}_{ab} \equiv \frac{\Gamma(H^{++} \to \ell_a^+ \ell_b^+)}{\sum_{cd} \Gamma(H^{++} \to \ell_c^+ \ell_d^+)} = \frac{2}{(1+\delta_{ab})} \frac{|M_{ab}|^2}{\sum_{cd} |M_{cd}|^2}$$

and

$$\sum_{cd} |M_{cd}|^2 = \sum_{i=1}^3 m_i^2 = \begin{cases} 3m_0^2 + \Delta m_{21}^2 + \Delta m_{31}^2 & \text{(NH)} \\ 3m_0^2 + \Delta m_{21}^2 + 2|\Delta m_{31}^2| & \text{(IH)} \end{cases}$$

The branchings $H^{++} \rightarrow \ell_a^+ \ell_b^+$

the branchings

$$\mathsf{BR}_{ab} = \frac{2}{(1+\delta_{ab})} \frac{|M_{ab}|^2}{\sum_{i=1}^3 m_i^2}$$

depend on

- the lightest neutrino mass m_0
- the type of the neutrino mass ordering (NH/IH)
- Majorana CP phases

The branchings $H^{++} \rightarrow \ell_a^+ \ell_b^+$

Assume two cases: $\epsilon N_{2H} = 100$ or 1000

 ϵ : detection efficiency

 N_{2H} : total number of doubly charged Higges decaying to 4ℓ

for 100 fb⁻¹ at LHC we will have roughly 1000 (100) events for $M_{H^{++}} \simeq 350$ GeV (600 GeV).

consider all possible flavour combinations of 4 lepton events allowing for at most one τ among the 4 leptons

perform a χ^2 fit for the 5 observables corresponding to the number of like-sign lepton pairs with the flavour combinations $(ee), (e\mu), (\mu\mu), (e\tau), (\mu\tau)$.

Determining the hierarchy

IH versus QD

excluding IH with $m_0 = 0$ in case of true QD

Measuring Majorana phases for QD

Measuring Majorana phases for $m_0 = 0$

there is no CP-odd observable

 $\Gamma(H^{++} \to \ell_a^+ \ell_b^+) = \Gamma(H^{--} \to \ell_a^- \ell_b^-) \propto |m_{ab}^\nu|^2$

 \Rightarrow only $\cos(\alpha_{ij})$ can be measured

nevertheless one can (in principle) confine the Majorana phases to CP violating values

(like in neutrino-less double beta decay)

Summary

- typical seesaw models for neutrino mass are very hard to test at LHC
- no chance to test neutrino properties at LHC for type-I seesaw even if right-handed neutrinos have TeV masses
- but there are many examples for models where neutrino masses are generated by physics at the TeV scale, testable at LHC
- the typical signature of TeV scale neutrino mass models are like-sign lepton events
- the relation of LHC observables to neutrino properties is very model dependent

Summary

I have discussed one particular example where neutrino mass emerges from the VEV of a Higgs triplet at the TeV scale

- very simple extension of the SM
- Triplets occur in many BSM theories
 e.g., L-R symmetric models, Little Higgs theories
- need Yukawas $\mathcal{O}(10^{-6})$ and a triplet VEV \ll EW scale
- clean signature at LHC: di-lepton events and nothing else
- can directly probe the neutrino mass matrix through the branching ratios of the decays $H^{\pm\pm} \rightarrow \ell_a^{\pm} \ell_b^{\pm}$
- can even measure Majorana phases

Let's hope for doubly-charged Higges at LHC ...

Thank you for your attention!

Additional slides

The branchings $H^{++} \rightarrow \ell_a^+ \ell_b^+$ for NH

$$\begin{split} \mathsf{BR}_{ee}^{\mathrm{NH},m_{0}=0} &\approx s_{12}^{4}r + 2s_{12}^{2}s_{13}^{2}\sqrt{r}\cos(\alpha_{32}-2\delta)\,,\\ \mathsf{BR}_{e\mu}^{\mathrm{NH},m_{0}=0} &\approx 2\left[s_{12}^{2}c_{12}^{2}c_{23}^{2}r + s_{23}^{2}s_{13}^{2} + 2s_{12}c_{12}s_{23}c_{23}s_{13}\sqrt{r}\cos(\alpha_{32}-\delta)\right]\,,\\ \mathsf{BR}_{\mu\mu}^{\mathrm{NH},m_{0}=0} &\approx s_{23}^{4} + 2s_{23}^{2}c_{23}^{2}c_{12}^{2}\sqrt{r}\cos\alpha_{32} + c_{23}^{4}c_{12}^{4}r \\ &\quad -4s_{23}^{3}c_{23}s_{12}c_{12}s_{13}\sqrt{r}\cos(\alpha_{32}-\delta)\,,\\ \mathsf{BR}_{e\tau}^{\mathrm{NH},m_{0}=0} &\approx 2\left[s_{12}^{2}c_{12}^{2}s_{23}^{2}r + c_{23}^{2}s_{13}^{2} - 2s_{12}c_{12}s_{23}c_{23}s_{13}\sqrt{r}\cos(\alpha_{32}-\delta)\,,\\ \mathsf{BR}_{\mu\tau}^{\mathrm{NH},m_{0}=0} &\approx 2s_{23}^{2}c_{23}^{2}\left(1 - 2c_{12}^{2}\sqrt{r}\cos\alpha_{32} + c_{12}^{4}r\right)\,. \end{split}$$

The branchings $H^{++} \rightarrow \ell_a^+ \ell_b^+$ *for IH*

$$\begin{aligned} \mathsf{BR}_{ee}^{\mathrm{IH},m_{0}=0} &= \frac{1}{2} \left(1 - \sin^{2} 2\theta_{12} \sin^{2} \frac{\alpha_{12}}{2} \right) , \\ \mathsf{BR}_{e\mu}^{\mathrm{IH},m_{0}=0} &= c_{23}^{2} \sin^{2} 2\theta_{12} \sin^{2} \frac{\alpha_{12}}{2} , \\ \mathsf{BR}_{\mu\mu}^{\mathrm{IH},m_{0}=0} &= \frac{c_{23}^{4}}{2} \left(1 - \sin^{2} 2\theta_{12} \sin^{2} \frac{\alpha_{12}}{2} \right) , \\ \mathsf{BR}_{e\tau}^{\mathrm{IH},m_{0}=0} &= s_{23}^{2} \sin^{2} 2\theta_{12} \sin^{2} \frac{\alpha_{12}}{2} , \\ \mathsf{BR}_{e\tau}^{\mathrm{IH},m_{0}=0} &= \frac{1}{4} \sin^{2} 2\theta_{23} \left(1 - \sin^{2} 2\theta_{12} \sin^{2} \frac{\alpha_{12}}{2} \right) , \end{aligned}$$

The branchings $H^{++} \rightarrow \ell_a^+ \ell_b^+$ *for QD*

$$\begin{split} \mathsf{BR}_{ee}^{\mathrm{QD}} &= \frac{1}{3} \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\alpha_{12}}{2} \right) = \frac{2}{3} \, \mathsf{BR}_{ee}^{\mathrm{IH},m_0=0} \,, \\ \mathsf{BR}_{e\mu}^{\mathrm{QD}} &= \frac{2}{3} \, c_{23}^2 \, \sin^2 2\theta_{12} \, \sin^2 \frac{\alpha_{12}}{2} = \frac{2}{3} \, \mathsf{BR}_{e\mu}^{\mathrm{IH},m_0=0} \,, \\ \mathsf{BR}_{\mu\mu}^{\mathrm{QD}} &= \frac{1}{3} \left[1 - \frac{1}{2} \sin^2 2\theta_{23} \left(1 - s_{12}^2 \cos \alpha_{31} - c_{12}^2 \cos \alpha_{32} \right) - c_{23}^4 \sin^2 2\theta_{12} \sin^2 \frac{\alpha_{12}}{2} \right] \,, \\ \mathsf{BR}_{e\tau}^{\mathrm{QD}} &= \frac{2}{3} \, s_{23}^2 \sin^2 2\theta_{12} \, \sin^2 \frac{\alpha_{12}}{2} = \frac{2}{3} \, \mathsf{BR}_{e\tau}^{\mathrm{IH},m_0=0} \,, \\ \mathsf{BR}_{e\tau}^{\mathrm{QD}} &= \frac{1}{3} \sin^2 2\theta_{23} \left(1 - s_{12}^2 \cos \alpha_{31} - c_{12}^2 \cos \alpha_{32} - \frac{1}{2} \sin^2 2\theta_{12} \sin^2 \frac{\alpha_{12}}{2} \right) \,. \end{split}$$