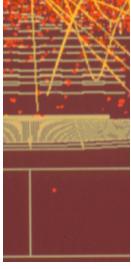


Physics Database Services at CERN

physics-database.support@cern.ch


Maria Girone, CERN IT-PSS WLCG Tier2 Tutorials, CERN, June 2006

PSS Introduction

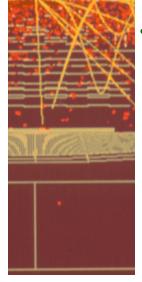
- How to build a reliable and redundant database service?
 - Hardware choices
 - Procedures
- What role does the database service have in WLCG?

SS Database services in WLCG

- Oracle services at CERN Tier 0 are used for
 - Conditions data
 - File Transfers
 - File Catalogs
 - Castor
 - Other experiment and Grid Applications
 - bookkeeping, physics production processing, on-line integration, detector construction and calibration, grid monitoring
- Database distribution outside Tier 0 are handled by the 3D project
 - ORACLE at Tier 1
 - Possibly mysql at Tier2
 - CERN tierO is one participating site
 - More info at lcg3d.cern.ch

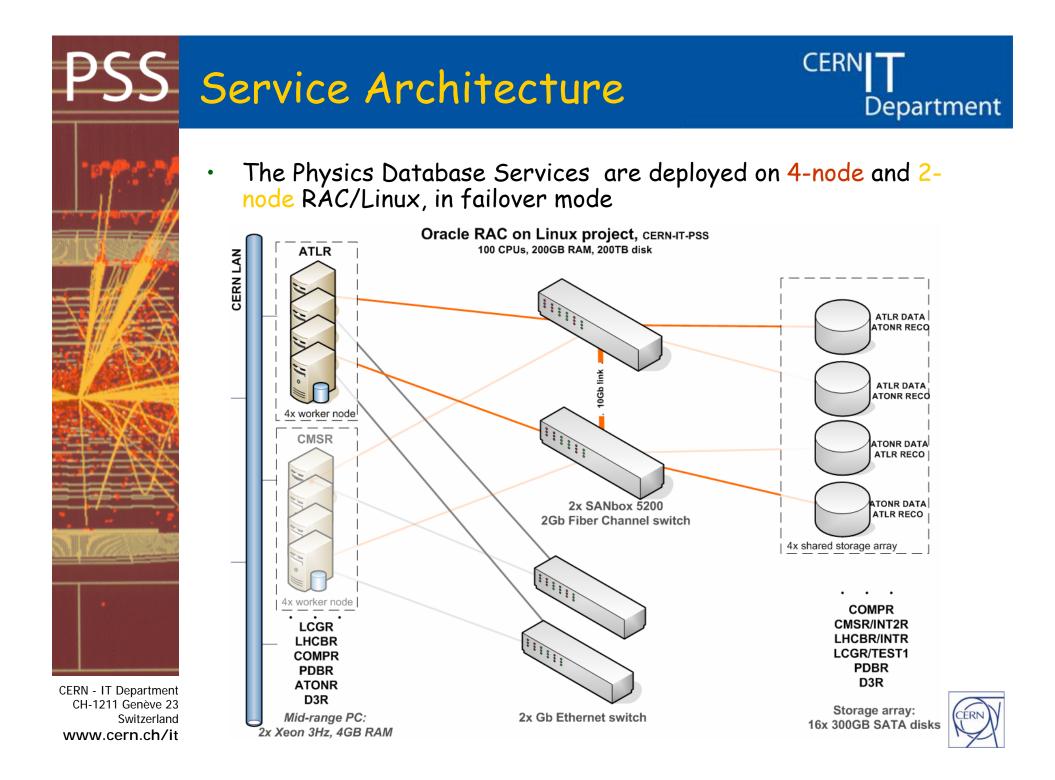
SS Database service in WLCG

- Oracle services at CERN Tier 0 are used for
 - Conditions data
 - File Transfers
 - File Catalogs
 - Castor
 - Other experiment and Grid Applications
 - bookkeeping, physics production processing, on-line integration, detector construction and calibration, grid monitoring
- Database distribution outside Tier 0 are handled by the 3D project
 - ORACLE at Tier 1
 - Possibly mysql at Tier2
 - CERN tierO is one participating site
 - More info at lcg3d.cern.ch



PSS Service Goals

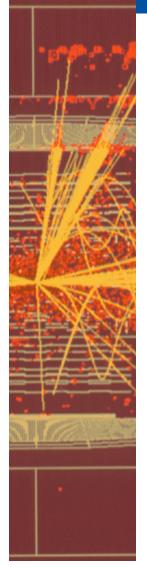
- Mandate: offer a highly available and scalable database service to the LHC experiments and grid deployment teams
 - <u>Scalability</u> in both database processing power and storage
 - <u>Flexibility</u> -
 - to cope with increasing demand
 - <u>Reliability</u>
- automatic failover in case of problems
- <u>Manageability</u> significantly easier to administer than many individual disk servers
- <u>Isolation</u> 10g 'services' and/or physical separation
- Architecture choice
 - Database software -> Real Application Cluster 10g
 - Operating system -> Linux (RedHat ES)


PSS Service Evolution

- Summer 2005
 - Solaris based shared Physics DB cluster (2-nodes for HA)
 - Low CPU power, hard to extend, shared by all experiments
 - 40 (many) linux disk servers as DB servers
 - High maintenance load, no resource sharing, no redundancy
- Autumn 2005: consolidation on extensible database clusters (RAC)
 - No sharing across experiments
 - Higher quality building blocks
 - Midrange PCs (RedHat ES)
 - FibreChannel attached disk arrays
 - Hardware resources more than doubled, same DBA team

PSS Resources Allocation

 Linear ramp-up budgeted for hardware resources in 2006-2008


Current state (summer 2006)

 Planning next major service extension for Q3 this year (current resources will be doubled)

SX#	Current state (summer 2006)						
	ATLAS	CMS	LHCb	Grid	3D	Non-LHC	PDB
X	4-node	4-node	4-node	4-node	2-node	4-node Compass	2-node
	2-node valid/test	2-node valid/test	2-node valid/test	2-node pilot			
	2-node online test						

PSS Main Operational Aspects

CERN - IT Department CH-1211 Genève 23 Switzerland WWW.cern.ch/it

Service Size

- 50 mid-range servers and ~50 disk arrays (~600 disks)
- In other words: 100 CPUs, 200GB of RAM, 200 TB of raw disk space
- Half of the servers are in production, monitored 24x7
- ORACLE 10gR2 as main platform

Service Procedures

- On-call team for 24x7 coverage
 - 4 DBAs and 5 developers (2 people on call)
- Backups on tape and on disk
- Recovery procedures validated
 - Default backup retention policy and frequency to be agreed with experiments/projects
- Monitoring: Oracle Enterprise Manager for DBAs
 - Application monitoring for users being integrated in Lemon

Development Service

- Code development, no large data volumes, no backups
- one shared cluster
- 8x5 monitoring and availability

Validation Service

 Larger tests and optimization
2-node RAC clusters
8x5 monitoring and availability
DBA consultancy

Production Service

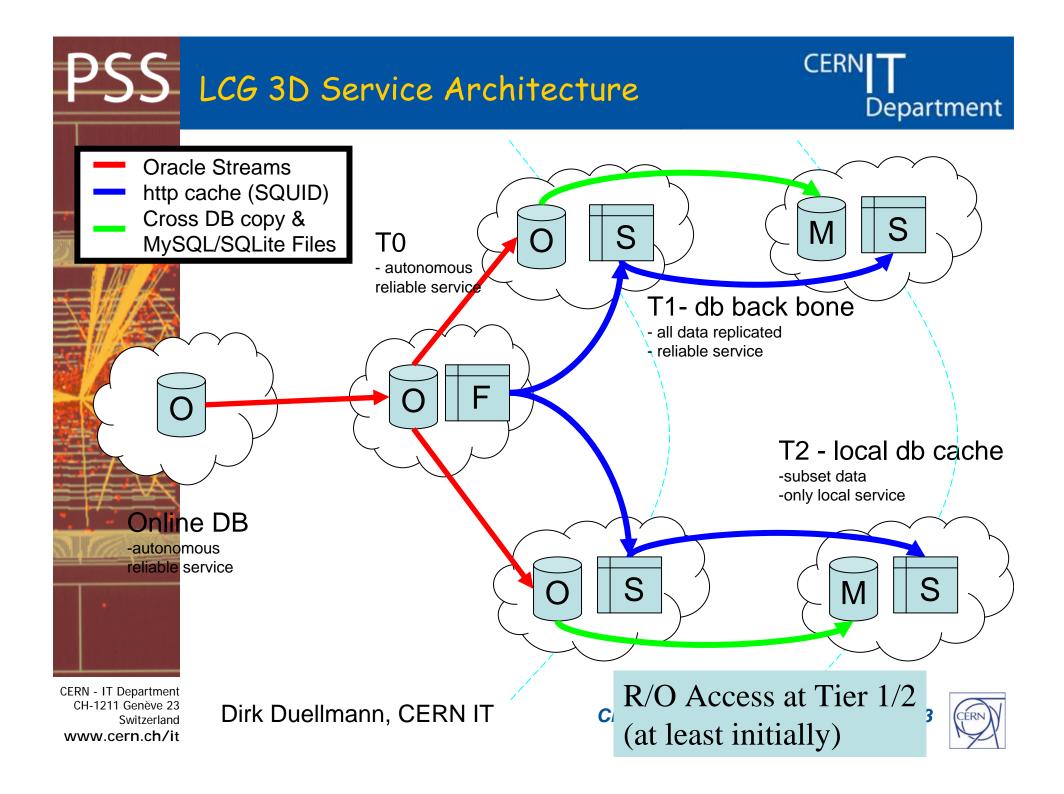
- 24x7 monitoring and availability, on call intervention procedures
- 4-node RAC cluster
- Backups every 30 minutes
- Limited number and scheduled planned interventions

CERN Physics Database Services - 10

PSS Service Limits

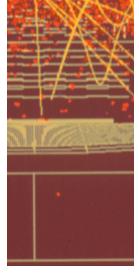
 Resource usage report to experiment and project database coordinator

- Allow experiment to prioritize resources and identify unexpected usage patterns
- Which jobs/users got affected by what limit?
- Resource allocation and planning done together with the experiments, using these reports



SS Database services in WLCG

- Oracle services at CERN Tier 0 are used for
 - Conditions data
 - File Transfers
 - File Catalogs
 - Castor
 - Other experiment and Grid Applications
 - bookkeeping, physics production processing, on-line integration, detector construction and calibration, grid monitoring
- Database distribution outside Tier 0 are handled by the 3D project
 - ORACLE at Tier 1
 - Possibly mysql at Tier2
 - CERN tierO is one participating site
 - More info at lcg3d.cern.ch



S Summary

- Physics Database services fully based on RAC
 - Benefits of consolidation and additional flexibility obtained
- We have achieved a highly available and scalable service
 - We are ready for the challenges of the LHC start-up
- Q3 Database extension planned
 - The database resources will be doubled again

