Design Patterns

Ruben Leivas Ledo

Internet Services Group
CERN — Geneva (CH)

Ruben.Leivas.Ledo@cern.ch

24-Feb-2005 Ruben Leivas Ledo - iCSC 1

Introduction

e About Patterns
The idea of patterns
What is a Pattern?
Pattern Definitions
Why Patterns?

Patterns Elements and Forms
e GoF Pattern Form
e Classification

Possible examples applied to the real life

24-Feb-2005 Ruben Leivas Ledo - iCSC 2

The Ildea of Patterns

e Designing Object Oriented SW is HARD
but, making it reusable is even
HARDER)!

Erich Gamma

e Unfortunately we live in a world where is

“vital” create reusable applications
... Me

24-Feb-2005 Ruben Leivas Ledo - iCSC

The Ildea of Patterns

e How to become a “Chess Master”

Learning the rules.

o Name of the figures, allowed movements, geometry and
table chess orientation.

Learning the principles
o Value of the figures, strategic movements

BUT....

e Being as good as Kasparov means studying, analyzing,
memorized and constantly applied the matches of other
Masters

There are hundreds of this matches

24-Feb-2005 Ruben Leivas Ledo - iCSC

The Ildea of Patterns

e How to become a SW Master

Learning the rules.
o Algorithms, data structures, programming languages, etc.

Learning the principles

e Structural programming, Modular programming, Object
Oriented, etc.

BUT....

e Being as good as Kasparov means studying, analyzing,
memorized and constantly applied the “solutions” of other
Masters

There are hundreds of these solutions (~patterns)

24-Feb-2005 Ruben Leivas Ledo - iCSC

The ldea of Patterns

® Each pattern describes a problem that
happens several times in our environment,

offering for it a solution in a way that it

can be applied one million times without
being the same twice.

e Christopher Alexander (1977)

24-Feb-2005 Ruben Leivas Ledo - iCSC 6

Patterns

e What is a Pattern?

A Solution for a problem in a particular
context.

Recurrent (applied to other situations
within the same context)

Learning tool
With a Name

o |dentifies it as unique.
e Common for the users community. (SIMBA)

24-Feb-2005 Ruben Leivas Ledo - iCSC 7

Motivation of Patterns

e Capture the experience of the experts and
make them accessible to the “mortals”

e Help the SW engineers and developers to
understand a system when this is
documented with the patterns which is using

e Help for the redesign of a system even if it
was not assumed originally with them

e Reusability
A framework can support the code reusability

24-Feb-2005 Ruben Leivas Ledo - iCSC

So... Why Patterns?

e Do you need more hints?

e Designing Object Oriented SW is HARD buft,
making it reusable is even HARDER!

Why not to gather and document solutions that have
worked in the past for similar problems applied in the
same context’

Common tool to describe, identify and solve recurrent
problems that allows a designer to be more productive

And the resulting designs to be more flexible and
reusable

24-Feb-2005 Ruben Leivas Ledo - iCSC 9

Types of Software Patterns

e Riehle & Zullighoven (Understanding and
Using Patterns in SW development)
e Conceptual Pattern

Whose form is described by means of terms and
concepts from the application domain.

e Design Pattern

Whose form is described by means of SW design
constructs (objects, classes, inheritance, eftc.)

e Programming Pattern

Whose form is described by means of programming
language constructs

24-Feb-2005 Ruben Leivas Ledo - iCSC 10

Gang Of Four

e There are several Design Patterns
Catalogues

e Most of the Designers follow the book
Design Patterns: Elements of Reusable
Object Oriented Software

E. Gamma, R. Helm, R. Johnson, J.
Vlissides.

24-Feb-2005 Ruben Leivas Ledo - iCSC 11

Classification of Design Patterns

e Purpose (what a pattern e Scope — what the
does) pattern applies to

Creational Patterns Class Patterns

e Concern the process e Class, Subclass
of Object Creation relationships

Structural Patterns ¢ Involve Inheritance

o Deal with de reuse
Composition of Object Patterns
Classes and Objects « Objects relationships
Behavioral Patterns Involve Composition
e Deal with the reuse

Interaction of Classes
and Objects

24-Feb-2005 Ruben Leivas Ledo - iCSC 12

Essential Elements of Design
Pattern

e Pattern Name

Having a concise, meaningful name
iImproves communication between
developers

e Problem
Context where we would use this pattern

Conditions that must be met before this
pattern should be used

24-Feb-2005 Ruben Leivas Ledo - iCSC

13

Essential Elements of Design
Pattern

e Solution

A description of the elements that make up the
design pattern

Relationships, responsibilities and collaborations
Not a concrete design or implementation. Abstract

e Consequences
Pros and cons of using the pattern
Includes impacts of reusability, portability...

24-Feb-2005 Ruben Leivas Ledo - iCSC 14

Pattern Template

e Pattern Name and Classification

¢ Intent
What the pattern does

e Also Known As
Other names for the pattern

e Motivation

A scenario that illustrates where the pattern would
be useful

e Applicability

Situations where the pattern can be used

24-Feb-2005 Ruben Leivas Ledo - iCSC 15

Pattern Template - Il

e Structure
Graphical representation of the pattern

e Participants
The classes & objects participating in the pattern

e Collaborations

How to do the participants interact to carry out their
responsibilities?

e Consequences

e Implementations
Hints and Techniques for implementing it

24-Feb-2005 Ruben Leivas Ledo - iCSC 16

Pattern Template - Il

e Sample Code

Code fragments for a Sample
Implementation

e Known Uses
Examples of the pattern in real systems

¢ Related Patterns

Other patterns closely related to the
patterns

24-Feb-2005 Ruben Leivas Ledo - iCSC 17

I
Pattern Groups (GoF)

24-Feb-2005 Ruben Leivas Ledo - iCSC 18

Let's go to the kernel !!

e Taxonomy of Patterns

Creational Patterns
e They abstract the process of instances creation

Structural Patterns

e How objects and classes are used in order to get
bigger structures

Behavioral Patterns

o Characterize the ways in which classes or
objects interact and distribute responsibilities

24-Feb-2005 Ruben Leivas Ledo - iCSC 19

Creational Patterns

e Deal with the best way to create
instances of objects

Listbox list = new Listbox()

e Our program should not depend on how
the objects are created

e The exact nature of the object created
could vary with the needs of the program

Work with a special “creator” which
abstracts the creation process

24-Feb-2005 Ruben Leivas Ledo - iCSC 20

Creational Patterns (ll)

e Factory Method

Simple decision making class that returns one of several
possible subclasses of an abstract base class depending on the
data we provided

Abstract Factory Method

Interface to create and return one of several families of related
objects

Builder Pattern

Separates the construction of a complex object from its
representation

Prototype Pattern

Clones an ins.tantiated class to make new instances rather than
creating new instances

Singleton Pattern

Class of which there can be no more than one instance. It
provides single global point of access to that instance

24-Feb-2005 Ruben Leivas Ledo - iCSC 21

Structural Patterns

e Describe how classes & objects can be
combined to form larger structures

e Concerning the scope
Class Patterns: How inheritance can be
used to provide more useful program
interfaces

Object Patterns: How objects can be
composed into larger structures (objects)

24-Feb-2005 Ruben Leivas Ledo - iCSC

22

Structural Patterns Il

Adapter

Match interfaces of different classes
Bridge

Separates an object’s interface from its implementation
Composite

A tree structure of simple and composite objects
Decorator

Add responsibilities to objects dynamically
Facade

A single class that represents an entire subsystem
Flyweight

A fine-grained instance used for efficient sharing
Proxy

An object representing another object

24-Feb-2005 Ruben Leivas Ledo - iCSC 23

Behavioral Patterns

e Concerned with communication between
objects

e It's easy for an unique client to use one
abstraction

e Nevertheless, it's possible that the client may
need multiple abstractions...

e ...and may be it does not know before using
them how many and what!

This kind of Patterns (observer, blackboard,
mediator) will allow this communication

24-Feb-2005 Ruben Leivas Ledo - iCSC 24

Behavioral Patterns

Chain of Responsibility
A way of passing a request between a chain of objects

Command
Encapsulate a command request as an object

Interpreter
A way to include language elements in a program

Iterator
Sequentially access the elements of a collection

Mediator

Defines simplified communication between classes

Memento
Capture and restore an object's internal state

24-Feb-2005 Ruben Leivas Ledo - iCSC 25

Behavioral Patterns |l

e Observer
A way of notifying change to a number of classes

e State
Alter an object's behavior when its state changes

e Strategy
Encapsulates an algorithm inside a class

e Template

Defer the exact steps of an algorithm to a subclass
e Visitor

Defines a new operation to a class without change

24-Feb-2005 Ruben Leivas Ledo - iCSC 26

Examples applied to real life

24-Feb-2005 Ruben Leivas Ledo - iCSC 27

Creational Pattern Example

e Factory

Define an interface for creating an object, but let subclasses decide
which class to instantiate.

Factory Method lets a class defer instantiation to subclasses.
e Participants
Product (Page)
» defines the interface of objects the factory method creates
ConcreteProduct (SkillsPage, EducationPage, ExperiencePage)
» implements the Product interface

Creator (Document)

» declares the factory method, which returns an object of type Product.
Creator may also define a default implementation of the factory method
that returns a default ConcreteProduct object.

o may call the factory method to create a Product object.
ConcreteCreator (Report, Resume)
« overrides the factory method to return an instance of a ConcreteProduct.

24-Feb-2005 Ruben Leivas Ledo - iCSC 28

Creational Pattern Examples

e UML Diagram

Product

JAN

ConcreteProduct

24-Feb-2005

Creator

+FactoryMethod() — —

+AnCperation|)

JAN

product = FactoryMethod()

ConcreteCreator

+FactoryMethod() ——

Ruben Leivas Ledo - iCSC

refurn nesv ConcreteProduct ll‘

29

Sample Code (Factory)

24-Feb-2005

// Factory Method pattern -

using System;
using System.Collections;

// "Product"

abstract class Product

{
}

// "ConcreteProductA"

class ConcreteProductA
Product

{
j

// "ConcreteProductB"

class ConcreteProductB
Product

{ }

// "Creator"
abstract class Creator

// Methods
abstract public Product

FactoryMethod () ;

// "ConcreteCreatorA"

class ConcreteCreatorA
Creator

// Methods
override public Product
FactoryMethod ()

{

return new
ConcreteProductA() ;

}
}

Ruben Leivas Ledo - iCSC

30

Sample Code (Factory)

® // "ConcreteCreatorB" class Client

class ConcreteCreatorB public static void Main(

24-Feb-2005

Creator

// Methods
override public
Product FactoryMethod ()

{

return new
ConcreteProductB () ;

J
J

string[] args)

// FactoryMethod
returns ProductA
Creator ¢ = new
ConcreteCreatorA() ;
Product p =
c.FactoryMethod() ;
Console.WriteLine (
"Created {0}", p);

// FactoryMethod
returns ProductB

Cc = new
ConcreteCreatorB() ;

p = c.FactoryMethod() ;

Console.WriteLine (
"Created {0}", p);

Ruben Leivas Ledo -1CSC

31

Sample Code (Factory)

® using System; ® // "ConcreteProduct"
using System.Collections;

class IntroductionPage : Page
// "Product"

abstract class Page // "ConcreteProduct"

1 class ResultsPage : Page

// "ConcreteProduct" }

class SkillsPage : Page // "ConcreteProduct"

} class ConclusionPage : Page
// "ConcreteProduct" %

class EducationPage : // "ConcreteProduct"

% class SummaryPage : Page

// "ConcreteProduct" }

class ExperiencePage

{
}

24-Feb-2005 Ruben Leivas Ledo - iCSC 32

Sample Code (Factory)

® // "Creator"

abstract class Document

{

// Fields
protected ArraylList pages = new ArrayList();

// Constructor
public Document ()

{

this.CreatePages () ;

}

// Properties
public ArrayList Pages

{

get{ return pages; }

// Factory Method
abstract public void CreatePages();

24-Feb-2005 Ruben Leivas Ledo - iCSC 33

Sample Code (Factory)

® // "ConcreteCreator" ® // "ConcreteCreator"
class Resume : Document class Report : Document

// Factory Method // Factory Method

override public wvoid override public void
CreatePages () CreatePages ()

pages.Add (new pages.Add (new
SkillsPage ()) ; IntroductionPage ()) ;

pages.Add (new pages.Add(new
EducationPage ()) ; ResultsPage ());
pages.Add(new pages.Add(new

ExperiencePage () ConclusionPage ()) ;
pages.Add (new

SummaryPage ()) ;
pages.Add (new
BibliographyPage ()) ;

24-Feb-2005 Ruben Leivas Ledo - iCSC 34

Sample Code (Factory)

® /// <summary>
/// FactoryMethodApp test
/// </summary>
class FactoryMethodApp

{

public static void Main(stringl[] args)

{

Document [] docs = new Document[2];

// Note: constructors call Factory Method
docs [0] = new Resume () ;
docs [1l] = new Report();

// Display document pages
foreach(Document document in docs)

Console.WriteLine("\n" + document + "
foreach(Page page in document.Pages)
Console.WritelLine(" " + page);

24-Feb-2005 Ruben Leivas Ledo - iCSC 35

Structural Pattern Example

e Adapter

Convert the interface of a class into another interface clients
expect.

Adapter lets classes work together that couldn't otherwise
because of incompatible interfaces
e Participants
Target (ChemicalCompound)
o defines the domain-specific interface that Client uses.

Adapter (Compound)
o adapts the interface Adaptee to the Target interface.

Adaptee (ChemicalDatabank)
o defines an existing interface that needs adapting.

Client (AdapterApp)
e collaborates with objects conforming to the Target interface.

24-Feb-2005 Ruben Leivas Ledo - iCSC

36

Sample Code (Adapter)

e UML Diagram

Client

larget

JAY

Adapter Adaptee
—_

+Request() | +5pecificRequest()

adaptes SpecificRequest() IT

24-Feb-2005 Ruben Leivas Ledo - iCSC 37

Sample Code (Adapter)

using System; // Properties
public float BoilingPoint

// "Target" {
get{ return boilingPoint; }

class ChemicalCompound }

// Fields public float MeltingPoint
protected string name; {

protected float boilingPoint; get{ return meltingPoint; }
protected float meltingPoint; }

protected double
molecularWeight; public double MolecularWeight

protected string

molecularFormula; get{ return
e molecularWeight; }
onstructor
public ChemicalCompound 13) 1
(string name) public string MolecularFormula

this.name = name; get{ return
molecularFormula; }

24-Feb-2005 Ruben Leivas Ledo - iCSC 38

Sample Code (Adapter

° // "Adapter"
class Compound : ChemicalCompound

// Fields
private ChemicalDatabank bank;

// Constructors
public Compound(string name) : base(name)

// We use now the Adaptee

bank = new ChemicalDatabank() ;

// Adaptee request methods

boilingPoint = bank.GetCriticalPoint (name, "B"
meltingPoint = bank.GetCriticalPoint (name, "M"
molecularWeight = bank.GetMolecularWeight (name

4

I
I
me) ;

)
)
)
molecularFormula = bank.GetMolecularStructure(na

}

// Methods
public void Display ()

Console.WriteLine ("\nCompound: {0} ", name) ;
Console.WriteLine (" Formula: {0}",MolecularFormula) ;
Console.WriteLine (" Weight 0;",MolecularWeight) ;
Console.WriteLine (" Melting Pt: [O]",MeltingPoint)
() I

Console.WriteLine (" Boiling Pt: {0;",BoilingPoint) ;

24-Feb-2005 Ruben Leivas Ledo - iCSC 39

Sample Code (Adapter

// "Adaptee" public string GetMolecularStructure (

. string compound)
class ChemicalDatabank

// Methods -- the Databank 'legacy API' St]_.”ing structure = "";
public float GetCriticalPoint(string switch(compound.ToLower ())
compound, string point) {

float temperature 0. OF case "water": structure =
u = . ;
P "H20"; break;

Melting Point
{é(pohmg==uMu) case "benzene" : structure =
"C6H6"; break;
switch(compound.ToLower ()) case "alcohol": structure =

"C2H602"; break;
case "water": temperature = 0.0F;
break;
case "benzene" : temperature = 5.5F; return structure;
break;
case "alcohol": temperature = -
114JFi1ﬂEaki public double GetMolecularWeight (

string compound)
// Boiling Point .
else double weight = 0.0;
switch(compound.ToLower ())
switch(compound.ToLower ())

n n. 1 — .
case "water": temperature = case "water": weight 18.015;

100.0F;break; break; .

case "benzene" : temperature = case "benzene" : weight =
80.1F; break; 78.1134; break;

case "alcohol": temperature = 78.3F; case "alcohol": weight =

break; 46.0688; Dbreak;
}

return temperature; return weight;

24-Feb-2005 Ruben Leivas Ledo - iCSC 40

Sample Code (Adapter)

/

<summarys>

/ AdapterApp test application

/

</summary>

blic class AdapterApp

public static void Main(string[] args)

{

24-Feb-2005

// Retrieve and display water characteristics
Compound water = new Compound("Water");
water.Display () ;

// Retrieve and display benzene characteristics
Compound benzene = new Compound ("Benzene");
benzene.Display () ;

// Retrieve and display alcohol characteristics
Compound alcohol = new Compound("Alcohol");
alcohol .Display () ;

Ruben Leivas Ledo - iCSC

41

Behavioral Patterns Example

e Chain of Responsibility

Avoid coupling the sender of a request to its receiver by giving more
than one object a chance to handle the request. Chain the receiving
_(:bjects and pass the request along the chain until an object handles
it.
e Participants

Handler (Approver)

« defines an interface for handling the requests

» (optional) implements the successor link
ConcreteHandler (Director, VicePresident, President)

» handles requests it is responsible for

e can access its successor

» if the ConcreteHandler can handle the request, it does so; otherwise it
forwards the request to its successor

Client (ChainApp)
» initiates the request to a ConcreteHandler object on the chain

24-Feb-2005 Ruben Leivas Ledo - iCSC 42

Sample Code (Chain of Respons.)

e UML Diagram

Handler

24-Feb-2005

=1

+HandleReqguest|)

A

'C oncreteHandler

AN

ConcreteHandler2

o>

+HandleRequast()

SUCCES50T

+HandleRequest()

Ruben Leivas Ledo - iCSC

43

24-Feb-2005

/I Chain of Responsibility pattern -- Real World
example
using System;

/["Handler"
abstract class Approver

{
/I Fields

protected string name;
protected Approver successor;

/I Constructors
public Approver(string name)

this.name = name;

/I Methods

public void SetSuccessor(Approver successor)
this.successor = successor;

abstract public void ProcessRequest(
PurchaseRequest request);

Sample Code (Chain of Respons.)

/["ConcreteHandler"
class Director : Approver

/I Constructors
public Director (string name) : base(name) {}

/I Methods
override public void ProcessRequest(
PurchaseRequest request)

{
if(request.Amount < 10000.0)
Console.WriteLine("{0} {1} approved
request# {2}",
this, name, request.Number);
else
if(successor != null)
successor.ProcessRequest(request);

Ruben Leivas Ledo - iCSC

44

Sample Code (Chain of Respons.)

24-Feb-2005

/["ConcreteHandler"
class VicePresident : Approver

// Constructors
public VicePresident (string name) :
base(nhame) {}

// Methods
override public void ProcessRequest(
PurchaseRequest request)

{
if(request.Amount < 25000.0)
Console.WriteLine("{0} {1} approved
request# {2}",
this, name, request.Number);
else
if(successor != null)
successor.ProcessRequest(request

Ruben Leivas Ledo - iCSC

/["ConcreteHandler"
class President : Approver

// Constructors
public President (string name) : base(
name) {}
// Methods
override public void ProcessRequest(
PurchaseRequest request)

{
if(request.Amount < 100000.0)
Console.WriteLine("{0} {1} approved
request# {2}",
| this, name, request.Number);
else
Console.WriteLine("Request# {0}
requires " +
"an executive meeting!”,
request.Number);

}

45

Sample Code (Chain of respons.)

/l Request details e // Properties
public double Amount
class PurchaseRequest
{ get{ return amount; }
// Member Fields set{ amount = value; }
private int number; }
private double amount;
private string purpose; public string Purpose

// Constructors get{ return purpose; }
public PurchaseRequest(set{ purpose = value; }

int number,
double amount, string purpose .
9 PUTp) public int Number
this.number = number;
this.amount = amount; get{ return number; }
this.purpose = purpose; }set{ number = value; }
}

24-Feb-2005 Ruben Leivas Ledo - iCSC 46

Sample Code (Chain of Respons.)

/Il <summary>

/Il ChainApp Application
Il <Isummary>

public class ChainApp

public static void Main(string[] args)

{
/| Setup Chain of Responsibility
Director Larry = new Director("Larry");
VicePresident Sam = new VicePresident("Sam");
President Tammy = new President("Tammy");
Larry.SetSuccessor(Sam);
Sam.SetSuccessor(Tammy);

/I Generate and process different requests

PurchaseRequest rs = new PurchaseRequest(2034, 350.00, "Supplies");
Larry.ProcessRequest(rs);

PurchaseRequest rx = new PurchaseRequest(2035, 32590.10, "Project X");
Larry.ProcessRequest(rx);

PurchaseRequest ry = new PurchaseRequest(2036, 122100.00, "Project Y");
Larry.ProcessRequest(ry);

24-Feb-2005 Ruben Leivas Ledo - iCSC a7

Conclusion

e Software Design Patterns are NOT
Restricted to Object Oriented designs
Untested ideas/theories/inventions
Solutions that have worked only once
Abstract Principles
Universally applicable for every context
A “silver bullet” or a panacea

24-Feb-2005 Ruben Leivas Ledo - iCSC 48

The Darwin’s case

e Before we thought that the evolution could be
modeled by a Singleton Pattern

Ensure a class has only one instance and provide a
global point of access to it.

singleton

-instance : Singleton

-aingleton()
+Instance() : Singleton

24-Feb-2005 Ruben Leivas Ledo - iCSC 49

The Darwin’s case

e But, hopefully Darwin discovered the
Factory!!

@ The Concrete Creator

Santa Barbara County Sheriff's Dept.

e M
o

A420a0e%
w0
HAML s;uxsmu Crasy i
| o %) -
N

B
WoGKINGE G2

Oh-my-God!!

24-Feb-2005 Ruben Leivas Ledo - iCSC 50

Conclusion

e Software Design Patters are

Recurring solutions to common design
problems

Concrete solutions to real world problems
Context Dependants

A literary form for documenting best
practices

Shared for the community

24-Feb-2005 Ruben Leivas Ledo - iCSC 51

That's all!

e References

Design Patterns: Elements of Reusable
Object Oriented Software
o E. Gamma, R. Helm, R. Johnson, J. Vlissides.

Understanding and Using Patterns in SW
development
e Riehle & Zullighoven

The www is plenty of interesting patterns
and examples.

24-Feb-2005 Ruben Leivas Ledo - iCSC 52

