Advanced Software Development & Engineering ,'

CERN
School of Computing

Design Patterns

Ruben Leivas Ledo (IT-19
Brice Copy (IT-AlS

CERN — Geneva (CH)

CERI\’I.

Introduction i

. About Patterns

- The idea of patterns
- What is a Pattern?
— Pattern Definitions
- Why Patterns?

- Patterns Elements and Forms

. Canonical Pattern Form
. GoF Pattern Form
. Comparison

CERI\’I.

The ldea of Patterns o

. Designing Object Oriented SW is HARD but,
making it reusable iIs even HARDER!

Erich Gamma

. Unfortunately we live in a world where Is
“basic” create reusable applications

CERIE

The ldea of Patterns S A

. How to become a “Master of Chess”

— Learning the rules.

. Name of the figures, allowed movements, geometry and table chess
orientation.

— Learning the principles
. Value of the figures, strategic movements

- BUT....

. Being as good as Kasparov means studying, analyzing, memorized
and constantly applied the matches of other Masters

— There are hundreds of this matches

CERIE

The ldea of Patterns S A

. How to become a SW Master

— Learning the rules.
. Algorithms, data structures, programming languages, etc.
— Learning the principles

. Structural programming, Modular programming, Object Oriented,
etc.

- BUT....

. Being as good as Kasparov means studying, analyzing, memorized
and constantly applied the “solutions™ of other Masters

- There are hundreds of these solutions (~patterns)

CERI\’I.

The ldea of Patterns o

. Each pattern describes a problem that happens
several times in our environment, offering for it
a solution in a way that it can be applied one
million times without being the same twice.

. Christopher Alexander (1977)

CERIE

Patterns i

. What is a Pattern?

- A Solution for a problem in a particular context.

- Recurrent (applied to other situations within the
same context)

— Learning tool
- With a Name

. Identifies it as unique.
. Common for the users community. (SIMBA)

CERI\’I.

Motivation of Patterns Sevosl of computing

. Capture the experience of the experts and make them
accessible to the “mortals”

. Help the SW engineers and developers to understand
a system when this is documented with the patters
which is using

. Help for the redesign of a system even if it was not
assumed originally with them

. Reusabillity

- A framework can support the code reusability

i

S0... Why Patterns? Co) of Compui

. Do you need more hints?

. Designing Object Oriented SW is HARD but, making it
reusable is even HARDER!

- Why not gather and document solutions that have worked in
the past for similar problems applied in the same context?

- Common tool to describe, identify and solve recurrent
problems that allows a designer to be more productive

- And the resulting designs to be more flexible and reusable

CERI\’I.

Types of Software Patterns G il

. Riehle & Zullighoven (Understanding and Using
Patterns in SW development)

. Conceptual Pattern

- Whose form is described by means of terms and concepts
from the application domain.

. Design Pattern

- Whose form is described by means of SW design constructs
(objects, classes, inheritance, etc.)

. Programming Pattern

- Whose form is described by means of programming
language constructs

10

11

i

G a n g Of F O U r gfi?ohtl)l of Computing

. There are several Design Patterns Catalogue

. Most of the Designers follow the book Design
Patterns: Elements of Reusable Object
Oriented Software

- E. Gamma, R. Helm, R. Johnson, J. Vlissides.

i

CERN

Classification of Design Patterns Schol of Computin

e Purpose (what apattern ¢ Scope—what the

does)

— Creationa Patterns

» Concern the process of
Object Creation

— Structural Patterns

e Deal with de Composition
of Classes and Objects

— Behaviora Patterns

» Deal with the Interaction
of Classes and Objects

12

pattern appliesto

— Class Patterns

 Class, Subclass
relationships

e |nvolve Inheritance reuse
— ODbject Patters

» Objects relationships

 Involve Composition
reuse

CERI\’I.

Essential Elements of Design Pattern s o canpuin

. Pattern Name

- Having a concise, meaningful name improves
communication between developers

. Problem

- Context where we would use this pattern

- Conditions that must be met before this pattern
should be used

13

CERIE

Essential Elements of Design Pattern s o canpuin

. Solution

— A description of the elements that make up the design
pattern

- Relationships, responsibilities and collaborations
— Not a concrete design or implementation. Abstract
. Consequences

- Pros and cons of using the pattern
- Includes impacts of reusability, portability...

14

CERIE

Pattern Template St o Computing

Pattern Name and Classification

Intent

— What the pattern does
Also Known As

— Other names for the pattern
Motivation

— A scenario that illustrates where the pattern would be useful

Applicability

- Situations where the pattern can be used

15

i

CERN

Pattern Template - Il Soon o Computi

16

Structure

- Graphical representation of the pattern
Participants

- The classes & objects participating in the pattern
Collaborations

- How to do the participants interact to carry out their
responsibilities?

Consequences
Implementations

- Hints and Techniques for implementing it

CERIE

Pattern Template - |l Soon o Computi

. Sample Code

- Code fragments for a Sample Implementation
. Known Uses

- Examples of the pattern in real systems
. Related Patterns

- Other patterns closely related to the patterns

17

Advanced Software Development & Engineering i(&
CERN
School of Computing

Pattern Groups (GoF)

18]

CERI\’I.

Let’'s go to the kernel !! Sosof ot

. Taxonomy of Patterns

— Creational Patterns
. They abstract the process of instances creation
— Structural Patterns

. How objects and classes are used in order to get bigger
structures

-~ Behavioral Patterns

. Characterize the ways in which classes or objects
iInteract and distribute responsibilities

19

i

CERN

Creational Patterns S AN

20

. Deal with the best way to create instances of

objects

Listbox list = new Listbox/()

. Our program should not depend on how the

objects are created

. The exact nature of the object created could

vary with the needs of the program

- Work with a special “creator” which abstracts the
creation process

CERI\’I.

Creational Patterns (I1) oo of ot

Factory Method

- Simple decision making class that returns one of several possible
subclasses of an abstract base class depending on the data we provided

Abstract Factory Method

— Interface to create and return one of several families of related objects
Builder Pattern

- Separates the construction of a complex object from its representation

Prototype Pattern

- Clones an instantiated class to make new instances rather than creating
new instances

Singleton Pattern

— Class of which there can be no more than one instance. It provides single
global point of access to that instance

21

CERI\’I.

Structural Patterns S AN

. Describe how classes & objects can be
combined to form larger structures

— Class Patterns: How inheritance can be used to
provide more useful program interfaces

— Object Patterns: How objects can be composed
Into larger structures (objects)

22

i
Structural Patterns |l o eauuilin

. Adapter
- Match interfaces of different classes
Bridge
— Separates an object’s interface from its implementation
Composite

— Atree structure of simple and composite objects
Decorator

-~ Add responsibilities to objects dynamically
Facade

- A single class that represents an entire subsystem
Flyweight

- A fine-grained instance used for efficient sharing

. Proxy

23 — An object representing another object

i

Behavioral Patterns e i

24

. Concerned with communication between objects
. It's easy for an unique client to use one abstraction
. Nevertheless, it's possible that the client may need

multiple abstractions

. ...and may be it does not know before using them

how many and what!

— This kind of Patters (observer, blackboard, mediator) will
allow this communication

CERIE

Behavioral Patterns B oowsiin

. Chain of Responsibility

- A way of passing a request between a chain of objects
. Command

- Encapsulate a command request as an object
. Interpreter

-~ A way to include language elements in a program
. lterator

- Sequentially access the elements of a collection
. Mediator

- Defines simplified communication between classes
. Memento

25 — Capture and restore an object's internal state

i

CERN

Behavioral Patterns | B oowsiin

26

Observer

- A way of notifying change to a number of classes
State

— Alter an object's behavior when its state changes
Strategy

- Encapsulates an algorithm inside a class
Template

- Defer the exact steps of an algorithm to a subclass
Visitor

- Defines a new operation to a class without change

27

Advanced Software Development & Engineering

Examples applied to real life

CERN
School of Computing

i

CERN

Creational Pattern Example S 7 Comptn

28

. Factory

Define an interface for creating an object, but let subclasses decide which class
to instantiate.

Factory Method lets a class defer instantiation to subclasses.

. Participants

Product (Page)
defines the interface of objects the factory method creates
ConcreteProduct (SkillsPage, EducationPage, ExperiencePage)
implements the Product interface
Creator (Document)

declares the factory method, which returns an object of type Product. Creator may
also define a default implementation of the factory method that returns a default
ConcreteProduct object.

may call the factory method to create a Product object.
ConcreteCreator (Report, Resume)

overrides the factory method to return an instance of a ConcreteProduct.

Advanced Software Development & Engineering i

CERN

Creational Pattern Examples S o Compting

» UML Diagram

Product Creator

N

+FactoryMethod{) — —— — product = FactoryMethadi()
+AnCperation()

n 7

ConcreteProduct ConcreteCreator

+FactoryMethod({) — — — - return new ConcreteProduct

29

Sample Code (Factory)

30

// Factory Method pattern -

using System;
using System.Collections;

// "Product"

abstract class Product

{
J

// "ConcreteProductA"

class ConcreteProductA
Product

{
}

// "ConcreteProductB"

class ConcreteProductB
Product

i

i

CERN

// "Creator"

abstract class Creator
{

// Methods

abstract public Product
FactoryMethod () ;

}

// "ConcreteCreatorA"

class ConcreteCreatorA
Creator
// Methods
override public Product
FactoryMethod ()
return new
ConcreteProductA () ;

}
}

School of Computing

Sample Code (Factory)

School of Computing

31

// "ConcreteCreatorB"

class ConcreteCreatorB
Creator

// Methods

override public Product
FactoryMethod ()

return new
ConcreteProductB() ;

}
}

i

class Client

{
public static void Main(
string[] args)

{

// FactoryMethod returns
ProductA

Creator ¢ = new
ConcreteCreatoraA() ;

Product p =
c.FactoryMethod() ;

Console.WritelLine (
"Created {0}", p);

// FactoryMethod returns
ProductB

C = new
ConcreteCreatorB () ;

p = c.FactoryMethod() ;

Console.WritelLine (
"Created {0}", p);

Sample Code (Factory)

32

using System;
using System.Collections;

// "Product"

abstract class Page

{
}

// "ConcreteProduct"

class SkillsPage

{
}

// "ConcreteProduct"

Page

class EducationPage Page
// "ConcreteProduct"
class ExperiencePage Page

{
1

i

CERN

// "ConcreteProduct"

class IntroductionPage

{
}

// "ConcreteProduct"

Page

class ResultsPage

{
)

// "ConcreteProduct"

Page

class ConclusionPage

{
)

// "ConcreteProduct"

Page

class SummaryPage

{
}

Page

School of Computing

Advanced Software Development & Engineering

Sample Code (Factory)

. // "Creator"

abstract class Document

{

// Fields
protected ArraylList pages = new ArrayList();

// Constructor
public Document ()

{
J

// Properties
public ArrayList Pages

{

get{ return pages; }

}

// Factory Method
abstract public void CreatePages|() ;

this.CreatePages () ;

}

33

CERN
School of Computing

Sample Code (Factory)

34

// "ConcreteCreator"

class Resume Document

{

// Factory Method

override public wvoid
CreatePages ()

pages.Add (new
SkillsPage ()) ;

pages.Add (new
EducationPage ()) ;
pages.Add (new

e())i

Ex§eriencePag (

)

CERN
School of Computing

// "ConcreteCreator"

class Report : Document

{

// Factory Method

override public wvoid
CreatePages ()

pages.Add (new
IntroductionPage ()) ;

pages.Add(new ResultsPage ()

pages.Add (new
ConclusionPage ()) ;

pages.Add(new SummaryPage ()
) i

pages.Add (new
BibliographyPage ()) ;

}

Sample Code (Factory)

35

/// <summary>

/// FactoryMethodApp test
/// </summary>

class FactoryMethodApp

{

public static void Main(string[] args)

{

Document [] docs = new Document[2 1;

// Note: constructors call Factory Method
docs [0] = new Resume () ;
docs [1l] = new Report();

// Display document pages
foreach(Document document in docs)

{

Console.WriteLine("\n" + document + " ------- "),
foreach(Page page in document.Pages)
Console.WriteLine(" " + page);

CERN
School of Computing

CERIE

Structural Pattern Example oo f apit

. Adapter

- Convert the interface of a class into another interface clients expect.

— Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces

. Participants

- Target (ChemicalCompound)
. defines the domain-specific interface that Client uses.
- Adapter (Compound)

. adapts the interface Adaptee to the Target interface.
- Adaptee (ChemicalDatabank)

. defines an existing interface that needs adapting.
- Client (AdapterApp)
. collaborates with objects conforming to the Target interface.

36

37

» UML Diagram

Client

larget

Advanced Software Development & Engineering ,’

Sample Code (Adapter)

Target

+Request()

AN

Adapter adaplae

CERN
School of Computing

Adaptee

tRequest() |

adaptes SpecificRequest|)

—

+5peciicRequest()

i

Sample Code (Adapter) e

38

using System;
// "Target!"

class ChemicalCompound

{

// Fields
protected string name;

protected float boilingPoint;
protected float meltingPoint;

protected double
molecularWeight;

protected string
molecularFormula;

// Constructor
public ChemicalCompound
(string name)

this.name = name;

}

// Properties
public float BoilingPoint

{
}

public float MeltingPoint

{
J

%ublic double MolecularWeight

get{ return boilingPoint; }

get{ return meltingPoint; }

get{ return molecularWeight;

}

%ublic string MolecularFormula
get{ return
molecularFormula; }

J
J

Advanced Software Development & Engineering i

CERN

Sample Code (Adapter) S 7 Comptn

// "Adapter"

class Compound : ChemicalCompound
{

// Fields

private ChemicalDatabank bank;

// Constructors

public Compound(string name) : base(name)

{
// Adaptee
bank = new ChemicalDatabank() ;
// Adaptee request methods
boilingPoint = bank.GetCriticalPoint (name, "B");
meltingPoint = bank.GetCriticalPoint (name, "M");
molecularWeight = bank.GetMolecularWeight (name) ;
molecularFormula = bank.GetMolecularStructure(name) ;

}

// Methods
public void Display ()
{
Console.WriteLine ("\nCompound: {0} ------ ", name) ;
Console.WriteLine (" Formula: {0}",MolecularFormula) ;
Console.WriteLine (" Weight : {0}",MolecularWeight) ;
()
()

I

Console.WriteLine (" Melting Pt: {0}",MeltingPoint
Console.WriteLine (" Boiling Pt: {0}",BoilingPoint

I

39

Sample Code (Adapter)

40

// "Adaptee"
class ChemicalDatabank

// Methods -- the Databank 'legacy API'
public float GetCriticalPoint(string
compound, string point)

{

float temperature = 0.0F;

// Melting Point

if (point == "M")

{

switch(compound.ToLower ())

{

break;

case "water": temperature = 0.0F;

case '"benzene"
5.5F; break;

case "alcohol": temperature = -
114 .1F; break;

)

// Boiling Point
else

{

switch(compound.ToLower ())

{
case "water": temperature =
100.0F;break;
case "benzene"
80.1F; break;
case "alcohol": temperature =
78 .3F; break;

)
1

temperature =

temperature =

i

CERN

public string GetMolecularStructure (

string compound)
string structure = "";
switch(compound.ToLower ())

{
case "water": structure =
"H20"; break;
case "benzene"
"Ce6H6"; break;
case "alcohol": structure =
"C2H602"; break;

}

return structure;

}

public double GetMolecularWeight (
string compound)

structure =

double weight = 0.0;
switch(compound.ToLower ())

{
case "water": weight = 18.015;
break;
case "benzene"
78.1134; break;
case "alcohol": weight =
46 .0688; break;

}

return weiqght:

weight =

School of Computing

Sample Code (Adapter)

41

/// <summary>

/// AdapterApp test application
/// </summary>

public class AdapterApp

{

public static void Main(string[] args)

{

// Retrieve and display water characteristics
Compound water = new Compound("Water") ;
water.Display () ;

// Retrieve and display benzene characteristics
Compound benzene = new Compound("Benzene") ;
benzene.Display () ;

// Retrieve and display alcohol characteristics
Compound alcohol = new Compound("Alcohol");
alcohol .Display () ;

CERN
School of Computing

CERIE

Behavioral Patterns Example ot f amput

. Proxy

- Provide a surrogate or placeholder for another object to control access to it.
. Participants

- Proxy (MathProxy)

maintains a reference that lets the proxy access the real subject. Proxy may refer to a Subject if
the RealSubject and Subject interfaces are the same.

provides an interface identical to Subject's so that a proxy can be substituted for for the real
subject.

controls access to the real subject and may be responsible for creating and deleting it.

other responsibilites depend on the kind of proxy:

- remote proxies are responsible for encoding a request and its arguments and for sending the encoded
request to the real subject in a different address space.

- virtual proxies may cache additional information about the real subject so that they can postpone accessing
it. For example, the ImageProxy from the Motivation caches the real images's extent.

- protection proxies check that the caller has the access permissions required to perform a request.
- Subject (IMath)

defines the common interface for RealSubject and Proxy so that a Proxy can be used anywhere a
RealSubject is expected.

- RealSubject (Math)

defines the real object that the proxy represents.

42

43

Advanced Software Development & Engineering

Sample Code (Proxy)

» UML Diagram

Cliant

Subject

=]

+Request()

A

RealSubject

Proxy

+Requesi()

realsubject

+Request() :

realSubject, Requesi()

CERN
School of Computing

Sample Code (Proxy)

44

using System;
using System.Runtime.Remoting;

/" Subject”
f[)ublic interface IMath
/| Methods

double Add(double x, doubley);
double Sub(double x, doubley);
double Mul(double x, doubley);

} double Div(double x, doubley);

// "Real Subject"

class Math : MarshalByRefObject, IMath

{
/| Methods

public double Add(double x, doubley)

{retunx +vy; }

public double Sub(double x, doubley)

{ returnx -y; }

public double Mul(double x, doubley)

{ returnx * y; }

public double Div(double x, doubley)

}{ returnx/y; }

i

CERN

School of Computing

/I Remote "Proxy Object"
class MathProxy : IMath

{
/] Fields
Math math;
/I Constructors
public MathProxy()

/I Create Math instance in adifferent AppDomain
AppDomain ad = System.AppDomain.CreateDomain(
"MathDomain",null, null);
ObjectHandle o =
ad.Createl nstance("Proxy_ReaWorld", "Math", false,
System.Reflection.BindingFlags.Createl nstance,
null, null, null,null,null);
math = (Math) o.Unwrap();

/ Methods
public double Add(double x, doubley)

return math.Add(x,y);

public double Sub(double x, doubley)

=

return math.Sub(x,y);

——

public double Mul(double x, doubley)

~=

return math.Mul(x,y);

——

public double Div(double x, doubley)

=

return math.Div(X,y);

——

CERI£

Sample Code (Proxy) S 7 Comptn

. public class ProxyApp

{
public static void Main(string[] args)
{
// Create math proxy
MathProxy p = new MathProxy () ;
// Do the math
Console.WriteLine("4 + 2 = {0}", p.Add(4, 2));
Console.WriteLine("4 - 2 {0}", p.Sub(4, 2));
Console.WriteLine("4 * 2 {o}", p.Mul(4, 2));
Console.WriteLine("4 / 2 = {0}", p.Div(4, 2));
}
}

45

CERI\’I.

Inversion of Control Pattern Sevoulof Compting
(lOC) a.k.a. Dependency injection

. Basically, a multi-purpose factory

. A 4GL replacement, exploits metadata from
your code to provide a declarative environment

. Configuring instead of coding

- Encapsulates complexity

- Lets you expose only “key” parameters that you
may change

46

CERI\’I.

I O C Ad Va n ta g e S School of Computing

. Forces you to write clean code

- No more complex dependencies
- For complex objects, use factories

— loC will wire objects for you (matching object
names to method parameters for instance)

- Destruction of your objects is also handled
. Saves you from writing boring code

- Calling new operators and getters/setters is both
error prone and very simple anyway

47

Advanced Software Development & Engineering ,'

CERN

loC Configuration sample ot f ompatin

Let us imagine a complex geometry setup
A material (aluminium)

A volume (a cube)

A physical volume (yes, that cube)

48

loC configuration sample
in GDML

<element mname="Aluminium e"
Z=" 13.0000" N=" 27" >
<atom type="A" unit="g/mol™"
value=" 26.9815" />

</element>

<box lunit="cm" aunit="degree"

name="boxV s"
x="20.0000" y="60.0000"

z="50.0000" />

<volume name="boxV">
<materialref ref="Aluminium e"/>

<solidref ref="boxV s"/>
</volume>

49

CERN
School of Computing

CERIE

loC configuration sample oo f ot
in loC XML

<bean name="Aluminium e" class="cern.mygdm.Material”>
<property name="Z" value="13.0000"/> /
<property name="N" value="27"/>
<property name="A">
<bean class="cern.mygdm.Atom” >
<constructor-arg><value>A</va1ue></constructor-arg>
<constructor-args><value>g/mol</value></constructor-arg>
<constructor-arg><value>26.9815</value></constructor-arg>
</beans>
</property>
</beans>
<bean name="boxV s" class="cern.mygdm.Box" >
<property name="1lunit” value="cm”/> /
<property name="aunit” value="degree”/>
<property name="X" value="20.0000"/>
<property name="Y"” value="60.0000"/>
<property name="Z" value="50.0000"/>
<bean name="boxV" class="cern.mygdm.PVolume” >
<property name=”solidref”><bean name="boxV s”/></property>
<property name="materialref” ><bean ref="${material}”/></propertys>
</volumes>

50

i

loC configuration sample Coon of ot

Using your configuration

51

// Pseudo-code (only compiles in my head)
BeanFactory myFactory =

IoCFactory.read (“*myVolume.xml”) ;

myFactory.setProperty (“material” , ”ALUMINIUM e”) ;
cern.mygdm.PVolume myVolume = myFactory.get (“boxV”) ;

// ...or you could change it like so

// assuming you defined a “LEAD” material
myFactory.setProperty (“material”,”LEAD e”) ;
cern.mygdm.PVolume myVolume = myFactory.get (“boxV”) ;

i

CERN

loC configuration sample Coon of ot

What's in it for you ?

52

. It is more verbose but...

. Totally generic -> easy integration

. Replaces code by configuration

. Configurable (pre and post process)

. Can be nested with other configurations

. No specific XML format maintenance (even

though they may be useful for conciseness)

i

CERN

I O C p I ath rm S School of Computing

53

. Primarily Java, as it currently offers the richest

reflection mechanism (including interceptors
and runtime proxy generation)

. Your langage needs reflection some way or

another

. .NET somewhat supports this, but

development effort is slower at the moment

loC frameworks

. Spring Framework Spring

- A simple yet powerful java loC framework
- A huge toolbox with very good default beans
— With aspect oriented programming support

— Comes with extensions for :

- JDBC / ORM frameworks
— Servilet API

- JMS

- Transaction management
- Etc...

- Spring.NET version — in the works
54

CERN
School of Computing

CERI£

loC frameworks (2) oo f ot

. PICO container 95'25ﬁt°amer

— A basic but lightweight loC library
— No built-in aspects support

. Apache Avalon's Fortress
. Castle for .NET ()

95

loC Benefits

56

CERN
School of Computing

. Cleaner code, heavy usage of interfaces
. Lets you encapsulate complexity and make it

configurable (mini pluggable blackbox)

models, not

. ... Like for al

. Encourages teamwork by sharing object

ines of code or libraries
patterns, those advantages are

not obvious until you try it

Conclusion

. Software Design Patterns are NOT

— Restricted to Object Oriented designs
- Untested ideas/theories/inventions

- Solutions that have worked only once

- Abstract Principles

— Universally applicable for every context
— A “silver bullet” or a panacea

57

CERN
School of Computing

i

CERN

CO n CI u S i O n School of Computing

58

. Software Design Patterns are

— Recurring solutions to common design problems
- Concrete solutions to real world problems

- Context Dependants

— A literary form for documenting best practices

- Shared for the community

