
Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Introduction to Enterprise 
Computing

Giovanni Chierico
CERN (IT-AIS-HR)

Inverted CERN School of Computing



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation “prerequisites”

The presentation doesn’t go into too much 
details, but it might be useful to have:

● General knowledge of distributed systems
● Some experience with OO Programming
● Some Java Experience



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

What is Enterprise Computing



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

What is “Enterprise 
Computing”

Solving computing problems in a
● Distributed
● Multi-tier
● Server-centric environment.

Common in big companies (like CERN) where users 
access a variety of applications that share data and 
resources, often integrated with legacy systems.



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Distributed

● Means that the components that make up our 
system could be living on different machines 
and communicate through the network

● Components must be able to find each other 
and to communicate effectively



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Multi-tier

● Many distributed schemas are possible (e.g. 
P2P)

● In an enterprise environment we can identify 
components having very different roles (client, 
server, database) and different requirements



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Server centric

● The server performs the operations needed to 
solve our particular problem (business logic).

● We are not going to write a new DB or a new 
client technology. They have to be as much 
standard as possible to minimize technology 
dependencies and deployment problems.



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Common 3-tier architecture

● Client
– Interfaces with the user

● Server
– Implements Business Logic
– Implements Middleware

● Database
– Persistently stores data
– Retrieves stored data



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Example

Client

Application Server

Database



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Common Problems



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Common Problems/Services
(I)

● Remote method invocation
– Logic that connects a client and a server via a network connection: 

dispatching method requests, serializing data, …

● Load balancing
– Client must be directed to server with lighest load

● Transparent fail-over
– If server crashes the client should be redirected to another one without 

interruption of service

● System integration
– New components must be integrated into existing system: different 

languages, OSs, hardware, …

● Transactions management
– Operations must be reliable (ACID) even across different machines 

and networks



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Common Problems/Services
(II)

● Logging
– If something goes wrong we need a log to reconstruct the events and 

indentify the problem

● Threading
– If many clients connect to the same server we must be able to process 

the requests simultaneously

● Messaging
– If components are loosely coupled we need to manage messages, 

queues, consumers, producers

● Pooling
– We must be able to pool and reuse expensive resource

● Caching
– We should be able to cache our data (e.g. DB query results) at 

different levels to improve performance



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Middleware

● All these services together can be called 
middleware because they don’t implement our 
business logic, but yet they have to be present 
in our system

● Should be present in the framework we use
● Should be more configured than programmed



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Complexity

● System complexity is the #1 problem in enterprise 
systems

– New functionalities are added to existing components
– New components are created and must be integrated with 

existing ones
– New technologies are introduced
– Old technologies are phased out

● Quality of service has to be maintained
● Developers come and go
● Software ecosystems



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Dependencies

● Dependencies are evil!
– Resilience
– Regressions

X X X
X X

X



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Abstraction

● Successful systems provide abstraction layers to limit 
dependencies

– Don’t need to understand internal combustion to drive a car
– Don’t need to understand TCP/IP to browse the web
– Don’t need to signal modulation to use your cell phone

● You shouldn’t care about the underlying abstraction 
layers.

● Unless there are problems!!!
● When you need another abstraction layer, use a 

standard one



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Software Abstraction Layers

● If you write the Logic you 
shouldn’t care about
– How the virtual machine 

opens a file
– How the OS stores the 

file
– How the hard disk 

organizes the sectors
● Trade-off flexibility vs

complexity
Hardware

Operative System

Virtual Machine

Logic

Client



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Optimization

“Premature optimisation is the root of all evil in programming”

Donald E. Knuth1

1) Professor Emeritus of “The Art of Computer Programming” at Stanford University 

● If the system is well designed, functionalities and 
performance are indipendent.

● Optimization usually creates dependencies
● Relying on particular implementations (non-standard public 

features) is dangerous
● Relying on particular “internal” features (e.g. Oracle SQL-

optimization) is a sign something is going wrong



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Programming Vs Configuring

● Easier to write/understand/maintain/deploy a 
configuration file than some program code
– Less dependend on the implementation
– Semantics are more evident

● If well designed it gives you
– All the functionalities you need
– Enforces good design
– Makes it more difficult to “shoot yourself in the 

foot”
See inversion of control pattern and the Spring Framework in following lectures



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Real World Solutions



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Application Server

•Client uses remote interface
•Remote Object is managed by Application Server
•Transparent use of middleware
•Reduced dependencies



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Enterprise: J2EE 
Java 2 Enterprise Edition

Sun Microsystems publishes J2EE specifications telling what 
services an Application Server must provide.

Specifications are defined with the Java Community Process, 
with the partecipation of many leading companies and 
individuals.

A whole set of specifications are available for anyone to 
implement (JAXP, JMS, JNDI, JTA, JSP, JDBC, ...) and new 
ones are always proposed and evaluated (Java Specification 
Requests)



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

J2EE Vendors

Various vendors (IBM, BEA, Oracle, JBoss) implement the J2EE 
specifications, competing in the Application Server market.

The implementations are tested by Sun that certifies the 
Application Servers as J2EE compatible. This guarantees that 
an application written following strictly the J2EE standards will 
run unmodified under the various implementations.

Vendors compete on the implementation quality (performance), 
and adding non-standard features.



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

J2EE stack



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Microsoft .NET

Similar services are
provided by the .NET
platform.

Of course there’s no
one-to-one strict 
correspondence…

And no real competition

J2EEMS.NET

JTA/JTSDTC

JDBCADO
JNDIADSI
JMSMSMQ

JSP/JSFASP

……

EJBMTS/COM+ 
RMIDCOM



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Common Patterns



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Naming Services

● Map human-friendly names to objects
– DNS
– File System
– LDAP

Adding this indirection layer we gain flexibility 
and portability.



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Development and Deployment

● Different Databases
● Different Hardware
● Different Operative Systems



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Deployment dilemma

Deploy

•There is a direct dependency between the application and the DB
•We must produce different “executables” for Test and Production environments
•Any change in the DB configuration will break our application

Test DB

Test Application

jdbc:x:x:scott/tiger@testdd

Prod DB

Prod Application

jdbc:x:x:peace/love@testdd



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Enterprise Deployment

Test DB

Application

Naming Service
Test

jdbc:x:x:scott/tiger@testdb

myDataSource

•No dependency between Application and DataBase
•No need for different Application versions
•Easier to maintain
•Separation of roles: Developer vs Application Server Administrator

Deploy

Prod DB

Application

Naming Service
Prod

jdbc:x:x:peace/love@testdb

myDataSource



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Naming: JNDI 
Java Naming and Directory Interface

Class.forName("oracle.jdbc.driver.OracleDriver");
Connection conn = 
DriverManager.getConnection("jdbc:x:x:scott/tiger@testdd");
/* use the connection */
conn.close();

Context ctx = new InitialContext();
Object dsRef=ctx.lookup("java:comp/env/jdbc/mydatasource");
DataSource ds=(Datasource) dsRef;
Connection conn=ds.getConnection();
/* use the connection */
conn.close();

Direct Connection

JNDI Connection



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

JNDI Configuration
using JBoss

<datasources> 
<local-tx-datasource> 

<jndi-name>comp/env/jdbc/mydatasource</jndi-name> 
<connection-url>jdbc:x:x:@testdd</connection-url> 
<driver-class>oracle.jdbc.driver.OracleDriver</driver-class> 
<user-name>scott</user-name> 
<password>tiger</password> 

</local-tx-datasource> 
</datasources>

•Application Server administrator manages this
•Application Server specific



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling

● Pooling means creating a pool of reusable resources
● Greatly improves performance if creating the 

resource is expensive (compared to using it)
● Should be completely transparent to the client
● Resources should be stateless



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling Schema

Client

Resource Provider

Resource 
Creator

Client

Resource Provider

Pool Manager

Resource 
Creator

Without Pooling With Pooling



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Pooling (JDBC)
Java DataBase Connectivity

Client

Application Server

JDBC Driver

DataSource API Connection DataSource.getConnection()

PooledConnection
Cache

ConnectionPoolDataSource API PooledConnection
ConnectionPoolDataSource.getConnection()



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling sequence

● Client requests new Connection
● DataSet obtains valid PooledConnection

– From pool if any available
– Otherwise create a new one

● Create new Connection from 
PooledConnection and return it to client

● When client closes the Connection the 
PooledConnection is not close but marked as 
available and returned to the pool.



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Code Example

Context ctx = new InitialContext();
Object dsRef=ctx.lookup("java:comp/env/jdbc/mydatasource");
DataSource ds=(Datasource) dsRef;
Connection conn=ds.getConnection();
/* use the connection */
conn.close();

JNDI Connection + Pooling

•Same code as before!
•Complexity completely hidden to developer
•No need to change java sources when pooling parameters change



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling Configuration
with JBoss

<datasources> 
<local-tx-datasource> 

<jndi-name>comp/env/jdbc/mydatasource</jndi-name> 
<connection-url>jdbc:x:x:@testdd</connection-url> 
<driver-class>oracle.jdbc.driver.OracleDriver</driver-class> 
<user-name>scott</user-name> 
<password>tiger</password>

<!-- Pooling parameters -->
<min-pool-size>5</min-pool-size>
<max-pool-size>100</max-pool-size> 
<blocking-timeout-millis>5000</blocking-timeout-millis>
<idle-timeout-minutes>15</idle-timeout-minutes> 

</local-tx-datasource> 
</datasources>



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Transaction Management

What is a transaction?

An atomic unit of work. The work in a transaction must 
be completed as a whole; if any part of the transaction 
fails, the entire transaction fails.

Very well know problem that has been “solved” in 
databases for a long time.



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

ACID properties

Atomic: the transaction must behave as a single unit of 
operation. No partial work to commit

Consistent: either creates a new valid state or rolls back to 
the previous one

Isolated: a transaction in process and not yet committed must 
not interfere from all other concurrent transactions

Durable: committed data is saved in a way that the state can 
be restored even in case of system failure

SO/IEC 10026-1:1992 Section 4 



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

ATM Transaction example

Client ATM

DataBase

Account
Manager

Bank
Get money Ask permission

Decrease
amount

Authorize
retrieval

Give moneyX

We need to be able to manage distributed transaction to solve
this class of problems.



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

2-phase commit

● Transaction Manager [TM]

● Resource Manager [RM]

TM RM

prepare

ready

commit

done

Success

TM RM

prepare

no

abort

done

Failure

A log is kept for all operations, to let the TM recover a valid state 
in case of system failure



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Distributed 2-phase commit

TM RM

RM
RM

RM

RM

The TM repeats the 2-phase commit with every RM

● If the all RM answer “ready” the TM issues a global “commit”

● If at least one RM answers “no” the TM issues a global “abort”



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Transactions (JTA)
Java Transaction API

Manage transactions in a programmatic way: you are responsible for 
programming transaction logic into your application code, that is calling 
begin(), commit(), abort().

Context ic = new InitialContext(); 
UserTransaction ut = (UserTransaction) ic.lookup(strTransJndi);
ut.begin(); 
// access resources transactionally here 
ut.commit();

Transactional
Application

Transaction
Manager

Resource
Manager



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

J2EE Declarative Transactions

It’s possible to specify at deploy time the transaction behavior. 

The Application Server will intercept calls to the components and 
automatically begin/end the transaction on your behalf

<ejb-jar>
<enterprise-beans>

<session>
<ejb-name>SomeName</ejb-name>
…
<transaction-type>Container</transaction type>

</session>
</enterprise-beans>

</ejb-jar>



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Transaction types

<container-transaction>
<method>

<ejb-name>myComponent</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

The J2EE application server manages different managed transaction types:

•Required: always run in a transaction. Join the existing one or starts a new one
•RequiresNew: always starts a new transaction
•Supports: joins the client transaction if any. Otherwise runs in no transaction
•Mandatory: transaction must already be running. Otherwise throws exception
•NotSupported: doesn’t use transactions. Suspends client transaction if it exists
•Never: cannot be involved in a transaction. Throw exception if client has one



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Conclusions

● There is no magic solution. You need experience to 
find the best compromise to solve your problem.

● You can solve any programming problem with an 
extra level of indirection ☺

● Except the problem of too many levels of indirection
● There are frameworks that already solve the most 

common and complex problems
● Understand the solution. Use the framework.
● Don’t reinvent the wheel



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Questions?



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Resources

● J2EE tutorial (http://java.sun.com/j2ee/1.4/docs/tutorial/doc/)

● JBoss Docs (http://docs.jboss.org/jbossas/jboss4guide/r2/html/)

● Designing J2EE Apps 
(http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/DEA2eTOC.html)


