
Consuming, Providing & Publishing WS

Ioannis G. Baltopoulos

Department of Computer Science
Imperial College London

Inverted CERN School of Computing, 2005
Geneva, Switzerland

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

1 The Software Environment
The tools
Apache Axis

2 Writing WS Consumers
Using WSDL2Java

3 Writing WS Providers
Using Java2WSDL
UDDI Overview
Publishing Services on UDDI

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

The Software Environment

For this tutorial we are going to use the following software
environment.

Java
Producers and Consumers will be based on Java version 1.4.2.

Eclipse
THE IDE for writing Java code. Version used is 3.1M4

Ant
Build tool used for automating the development process.

Tomcat
The Web Application container hosting the WS.

Axis
An open source WS implementation for Java; currently in
version 1.2RC2.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Apache Tomcat (5.0.28)
Installation and Notes

Web Site

http://jakarta.apache.org/tomcat/

Step by step installation

1 Download the required file from
http://jakarta.apache.org/site/binindex.cgi#tomcat

2 Extract the downloaded file in a directory of your choice.

3 Start the server from tomcat/bin/startup

4 Validate installation by going to http://localhost:8080/

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS



Apache Axis
Installation and Notes

Web Site

http://ws.apache.org/axis/

Step by step installation

1 Download the required file from
http://ws.apache.org/axis/releases.html

2 Extract the downloaded file in a directory of your choice.

3 Copy the axis/webapps directory to tomcat/webapps.

4 Restart the web server.

5 Validate installation by going to
http://localhost:8080/axis/happyaxis.jsp

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Apache Axis
The Purpose of the Application

Definition

Axis is the means by which SOAP messages are taken from the
transport layer and are handed to the Web Service and the means
by which any response is formatted in SOAP messages and sent
back to the requestor.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Apache Axis
Architectural Components

Axis Engine - The main entry point into the SOAP processor

Handlers - The basic building blocks inside Axis that link
Axis to existing back-end systems

Chain - An ordered collection of handlers

Transports - Mechanisms by which SOAP messages flow in
and out of Axis

Deployment/Configuration - Means through which Web
Services are made available through Axis

Serializers/Deserializers - Code that will convert native
datatypes into XML and back.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Axis Architectural Diagram

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS



WS Consumers
The process of writing a consumer

Locate the wsdl file for the service you’re interested in.

Use WSDL2Java to generate the stub classes.

Writing the actual client code.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

WSDL2Java
Command line and options

A tool for generating glue code in writing consumers and providers.

Command Line

java org.apache.axis.wsdl.WSDL2Java wsdl-file

Options

-o directory Used to specify the
output directory

-p package Package specification
for the output files

-v Verbose output
-t Generate test files
-s Generate server side

code

NOTE

The following files must
be on the CLASSPATH.

axis.jar
commons-discovery.jar
commons-logging.jar

jaxrpc.jar
saaj.jar

wsdl4j.jar

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Example Usage
Using a public weather web service

Capeclear offers a public weather service where given the location
code of an airport (”LHR”,”LGW”, etc) it returns a complete
weather report including temperature, humidity, wind direction.

Example

WSDL2Java.bat
http://www.capeclear.com/GlobalWeather.wsdl
-o %PROJECT BASE%\src\java
-p ch.cern.it.csc
-v

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Generated Files
What gets generated from the WSDL file

WSDL clause Java class(es) generated

For each <type> A java class.
A holder if this type is used as an in-
out/out parameter

For each <portType> A java interface
For each <binding> A stub class
For each <service> A service interface.

A service implementation (locator)

For each <binding> A skeleton class
An implementation template class

For all <services> One deploy.wsdd file
One undeploy.wsdd file

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS



Generated Files
Relationship & Location of generated files

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Client Code Example
Tying all the generated files together!

Example

import java.rmi.RemoteException;

public class Client {
public static void main(String[] args) {

ServiceLocator locator = new ServiceLocator();
ServicePort service = locator.getService();
try {

Report report = service.getReport("Status");
} catch (RemoteException e) {

e.printStackTrace();
}

}
}

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Writing Providers
The two approaches

Instant Deployment
Very simple way of providing a Web Service

Customized Deployment
More elaborate

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Instant Deployment

Step by step

1 Copy any Java source file that implements a web service into
the axis directory

no special code is required
all public, non-static methods are exposed
if the class is in a package, copy it to the appropriate
subdirectory

2 Change the file extension from .java to .jws

3 Place all related .class files under WEB-INF/classes

4 View the WSDL of a JWS web service using the following
URL in a web browser
http://host:port/axis/filename.jws?wsdl

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS



Example
An example using Instant Deployment

A very simple banking web service. The bank allows the following
four operations

Create an Account

Get the balance of an Account

Withdraw a given amount from an Account

Deposit a given amount to an Account

To implement it we will use two basic classes

A class Account

A BankingService class

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

The Account class

public class Account {
private String number;
private String owner;
private double balance;
public void withdraw(double amount) {

balance -= amount;
}
public void deposit(double amount) {

balance += amount;
}
public double getBalance() {

return balance;
}

}

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

The BankingService class

public class BankingService {
public void withraw(Account ac, double amount) {

ac.withdraw(amount);
}
public void deposit(Account ac, double amount) {

ac.deposit(amount);
}
public Account createAccount(String owner) {

return new Account();
}
public double getBalance(Account ac) {

return ac.getBalance();
}

}

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Limitations
The limitations of using instant deployment

The use of instant deployment is only intended for simple web
services. Here are some reasons why this is so

You cannot use packages in the pages

As the code is compiled at run time you can not find out
about errors until after deployment.

There is limited control over the serialization/deserialization
process.

The actual source code is placed on the web server

Sometimes the source code is not available

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS



Using Custom Deployment
The process of creating a Web Service

Step by step

1 Write a Facade interface the subsystem you want to expose as
a Web Service.

2 Create a WSDL file either manually or by using the
Java2WSDL tool that comes with Axis.

3 Create Bindings using the WSDL2Java tool making sure to
activate the options for emitting server side code as well as
deployment descriptors.

4 Package all the files in a .jar file

5 Copy the file to the WEB-INF/lib

6 Use the AdminClient tool to deploy the Web Services to Axis.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Java2WSDL
Command line and options

A tool for generating a WSDL file from existing Java code

Command Line

java org.apache.axis.wsdl.Java2WSDL wsdl-file

Options

-o filename Specifies the output filename
-l uri Specifies the URI of the service
-n namespace Target namespace of the wsdl
-p package namespace Generate test files
-v Verbose output

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Generate Server Side Bindings
Using WSDL2Java

The next step in the process is generating the server side bindings
and the deployment descriptors (deploy.wsdd, undeploy.wsdd).

Run the WSDL2Java tool using the -s and -S options (see
earlier slides for consumer generation).

Discard the client specific files

Package all the .class files in a .jar file. Use

jar cvf filename.jar file(s)

Copy the generated file into the WEB-INF/lib directory.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Service Deployment
Using the AdminClient tool and the .wsdd files

Deployment Descriptor Files

End with .wsdd (usually named deploy.wsdd and
undeploy.wsdd)

Specifies Axis components to be deployed or undeployed

Specifies special type mappings between XML and Java

Command Line

java org.apache.axis.client.AdminClient filename.wsdd

Options

-h host Specifies the host
-p port Specifies the port
-s servletPath Sets the path to the Axis Servlet

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS



UDDI Overview
Universal Description, Discovery and Integration (UDDI)

Definition

UDDI is a specification for creating distributed Web-based
registries of Web services. It defines

A UDDI registry which stores information on businesses, the
services offered by these businesses, and technical information
about these services.

The data model and programming API that provides a way
to publish and locate all kinds of services.

Specifically, UDDI is said to support three kinds of registry data

White Pages (organizing businesses by name)

Yellow Pages (organizing businesses by category)

Green Pages (organizing businesses by service)

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

The Colored Papers
White, yellow and green pages

White Pages

They contain information on a
business itself, including

A name,

Contact details

Location of the business

Unique identifiers

Yellow Pages

Yellow pages contain categorized
information about the services
provided by a business.

Categorization is done by
assigning one or more
taxonomies to the business.

Green Pages

Green pages contain technical information about a service which a
business offers. You can find information like

Service location

the category to which this service belongs

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

UDDI Data structures
Specifying entries in the Registry

UDDI defines five data type structures to specify an entry in the
registry. Each of these data structures is represented by an XML
document, containing both technical and descriptive information.
These are:

<businessEntity>

<businessService>

<bindingTemplate>

<tModel>

<publisherAssertion>

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Data Structure Details I

<businessEntity>

The businessEntity structure contains all descriptive information
about the business and the services it offers. Information includes
name and description of the business as well as contact
information, categorization, and relationships to other businesses.
This structure can be seen as the top-level structure of the service
in the registry.

<businessService>

Each businessEntity structure contains one or more businessService
structures. A businessService structure describes a categorized set
of services a business offers. A businessService element is not
owned by one businessEntity element, but can be shared among
multiple businesses.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS



Data Structure Details II

<bindingTemplate>

The bindingTemplate structure contains a technical description of
a service. Each bindingTemplate belongs to a single
businessService element.

<tModel>

One of the key elements of UDDI is the tModel. A tModel
describes the specification, the behavior, the concept, or even the
shared design to which a service complies. It provides specific
information about how to interact with this service. The content
of a tModel structure consists of a key, a name, an optional
description, and a URL element. The URL, in most cases, points
to a location where you can find more information about this
particular tModel. Two conventions have been applied for using
tModels.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Data Structure Details III

<publisherAssertion>

The publisherAssertion structure contains information about a
relationship between two parties asserted by one or both. Many
businesses, such as large corporations or marketplaces, are not
effectively represented by a single businessEntity. A
publisherAssertion can be used to denote the relationship between
the businesses. The content of a publisherAssertion structure
consists of a key (fromKey) for the first business, a key (toKey) of
the second business, and a reference (keyedReference) that
designates the asserted relationship in terms of a keyName,
keyValue pair within a tModel.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Publishing Services on UDDI
The manual way if doing things

Step by step installation

1 Logon to http://www.uddi.org/

2 Select a registry from IBM, Microsoft, SAP or NTT

3 Obtain login and password

4 Follow the step by step instructions on the website

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS

Concluding Remarks

In this lecture we saw

the software environment for developing and deploying Web
Services in Java

how to write Web Service consumers

how to write Web Service providers using instant and custom
deployment deployment.

what UDDI is and how to manually publish Web Services to
the Registry.

Ioannis G. Baltopoulos Consuming, Providing & Publishing WS


