Advanced Software Development Engineering i
CERN
School of Computing

Paolo Adragna

Universita degli Studi di Siena

Debugging Techniques

i

Why Debugging? o o Computing

Debugging is a fundamental part
of programmers’ everyday activity....

... but some people consider it
an annoying option...

Advanced Software Development Engineering ’-

USS Yorktown (1998) O o Comping

A crew member of the guided-missile cruiser USS Yorktown
mistakenly entered a zero for a data value, which resulted in a
division by zero. The error cascaded and eventually shut down the

ship's propulsion system. The ship was dead in the water for several
hours because a program didn't check for valid input.

(reported in Scientific American, November 1998)

i

Mars Climate Orbiter (1999) S oF ot

The 125 million dollar Mars Climate
Orbiter is assumed lost by officials at
NASA. The failure responsible for loss
of the orbiter is attributed to a failure of
NASA’s system engineer process.

The process did not specify
the system of measurement
to be used on the project. As
a result, one of the
development teams used
Imperial measurement
while the other used the
metric system. When
parameters from one module
were passed to another
during orbit navigation
correction, no conversion
was performed, resulting

in the loss of the craft.
http://mars.jpl.nasa.gov/msp98/orbiter/

4

i
Lecture Programme O o Compuin

* Part | - General Aspects of Debugging
* Part Il - General Debugging

e Part lll - C/C++ Related Problems and Solvers

5

Advanced Software Development Engineering i
CERN
School of Computing

Part |

General Aspects of Debugging

i
Part One - General Aspects of & e
Debugging

The debugging process involves:

* | ocalising a bug

* Classifying a bug

* Understanding a bug
* Repairing a bug

Advanced Software Development Engineering

i

|_ocalisi ng a Bug CEael of computing
#include <iostream> void ¢(void)
/I A scoping example {
void ¢ (void); // function prototype //Some other code
X *=10:;

intx=1; // global variable //[Some other code

}
int main()

{

intx =5;/7localtomain 0 oo what your code should do
/[Some other code

while (x < 100) You notice it does not do that
SO noticing a bug is easy’,

c(): // ¢ uses global ,
Y) J you might say...

/| Some other code
return O;

}

i
CERN

Classifying a Bug o eonaee

e Since experiences with bugs have often a
common background, we may attempt a
classification:

- Syntactical Errors: errors your compiler should catch.

- Build Errors: errors from using object files not rebuilt after
a change in some source.

- Basic Semantic Errors: using uninitialized variables,
dead code, type problems.

- Semantic Errors: using wrong variables, exchanging
operator (e. g. & instead of &&)

i

Classifying a Bug o eonaee

A funny “physical” classification
Bohrbugs and Heisembugs

Bohrbugs are deterministic:
a particular input will always manifest
them.

Heisembugs are random: difficult to
reproduce reliably

. i
Understanding a Bug o 7 comptin

* Understand a bug fully before attempting
to fix it

* Ask yourself some questions:

- Have | found the source of the problem or only a
symptom?

- Have | made similar mistakes (especially wrong
assumptions) elsewhere in the code?

— Is this only a programming error or is there a more
fundamental problem (e. g. incorrect algorithm)?

11

i
Repairing a Bug o o ot

* Repairing a bug is more than modifying code.
Make sure you document your fix in the code
and test it properly.

* After repair, what did you learn from it?

- How did you notice the bug? This may help you
writing a test case.

- How did you track it down? This will give you a
better insight on the approach to choose in similar
circumstances.

- What type of bug did you encounter? 15

i
Repairing a Bug o o ot

* After repair, what did you learn from it?

- Do you encounter this bug often? If so, what could
you do to prevent it from re-occurring?

- What you have learnt is valuable: try to
communicate it with your collegues

- Unjustified assumptions?

» After repairing a bug, write a test case to
make sure it does not happen again

13

Advanced Software Development Engineering ,-
CERN
School of Computing

Part Two

General Debugging

14

_ i
Part Two — General Debugging & s

A) Exploiting Compiler Feature

B) Reading The Right Documentation

C) The Abused cout Debugging Technique
) Logging

Defensive Programming

O

M

)
F) ACI Debugging Technique
G) Walking Through The Code

H) The Debugger 5

.. . i
Exploiting Compiler Features O ot
(General)

* A good compiler can do an amount of static
analysis on your code (the analysis of those
aspects that can be studied without
execution)

e Static analysis can help in detecting a number
of basic semantic problems (e. g. type
mismatch, dead code)

16

. . i
Exploiting Compiler Features O ot

(gcc)

* For gcc there are a number of options that
affect which static analysis can be performed

- Wall -W
* Also recommended when writing new code

- Wshadow

- Wpointer-arith
- Wcast-equal
- Wcast-align

— Wstrict-prototype 7

. i
Exploiting Compiler Feature St o Comput

(gcc)

* A number of optimizations are supported.
Some of these trigger gcc to do extensive
code flow analysis, removing dead code.

e Recommended for normal use: -O2

 Warning: optimisation Kills debugging, so you
have to choose

- Example: gcc -O3 or gcc -g -O0

18

i
Reading the Right o o Camput
Documentation

* Take the time to find at your fingertips
relevant documentation for:

- your task

— your tools

— your libraries
— your algorithm

* You do not need to know everything

* You need to be aware what documentation is

relevant and what is its purpose o

_ i
The Abused cout Technique ot computn

* This technique is encountered too often.

* |t consists of ad hoc insertion of lot of printing
statement to track the control flow and data
values during the execution of a piece of code

* Disadvantages

- Itis very ad hoc
— It clobbers the normal output
- Slows the program down considerably

- Often it does not help (output buffered) 0

_ i
The Abused cout Technique ot computn

* |f you consider using debugging, check out
the use of assertion and of a debugger, much
more effective and time saving

* [n some circumstances cout debugging is
appropriate. Some tips:

- Produce output on standard error (unbuffered)

- Do not use printing statements directly: define a
macro around them

- Use debugging level to manage the amount of
debugging information 51

.]
cout Technique - Example o o Compi

#ifndef DEBUG_H
#define DEBUG_H
#include <stdarg.h>

#if defined(NDEBUG) && defined(GNUC__)

/* gcc's cpp has extensions; it allows for macros with a variable
number of arguments. We use this extension here to preprocess
pmesg away. */

#define pmesg(level, format, args...) ((void)0)

#else

void pmesg(int level, char *format, ...);

/* print a message, if it is considered significant enough

Adapted from [K&R2], p. 174 */

#endif

#endif /* DEBUG_H */ 22

i
CERN

Logging) o Compuin

* Logging is a common aid to debugging
* Heavily used by daemon and services
* |t is a real solution to the cout technique

* |t records information messages which
monitor the status of your program

* They can even form the basis of software
auditing

* A sensible method is to classify log messages
and label them with a priority level o3

i

log4cpp - C++ Logging) o amput

Log4cpp has 3 main components:
- Categories

> Appenders

- Layouts

A layout class controls what the output message
IS going to look like.

You may derive your own classes from Layout or

use the provided SimpleLayout and BasicLayout
24

i

log4cpp - C++ Logging) o amput

An appender class writes the trace message,
formatted by a layout object, out to some device

log4cpp comes with classes to append to
standard output, a named file, or a string buffer:

- FileAppender
- OstreamAppender
- StringQueueAppender

Once again you may derive your own appender

(e.g. to a socket, a shared memory buffer...) ¢

i
CERN

log4cpp - C++ Logging S o Conputn

A category class does the actual logging.

The two main parts of a category are its appenders
and its priority

The priority of a category can be set to:

1-NOTSET 5-WARN 9-FATAL/
> _DEBUG 6- ERROR EMERG
In ascending order of

3 -INFO 7 - CRIT importance level
4 - NOTICE 8 - ALERT

26

i
CERN

log4cpp - C++ Logging S o Conputn

Each message is logged to a category object
The category object has a priority level

Priority controls which messages can be logged
by a particular class.

The message itself also has a priority level as it
wends its way to the log

If the priority of the message is greater than, or
equal to, the priority of the category, then logging

takes place, otherwise the message is ignored .

i

Log4cpp - Example S oF ot

There are six initial steps to using a log4cpp log:

> Instantiate an appender object that will append to a log
file

log4cpp::Appender* app = new log4cpp::FileAppender
("FileAppender”,"/logs/testlog4cpp.log”);

> Instantiate a layout object
log4cpp::Layout” layout = new log4cpp::BasicLayout(),
- Attach the layout object to the appender
app->setlLayout(layout);
28

i

Log4cpp - Example S oF ot

> Instantiate a category object by calling the static function
log4cpp::Layout™ layout = new log4cpp::BasicLayout();

> Attach the appender object to the category as an
additional appender (in addition to the default standard
out appender), or set Additivity to false first and install the
appender as the one and only appender for that category

main_cat.setAppender(app);
- Set a priority for the category

main_cat.setPriority (log4cpp::Priority::INFO),

29

i

Log4cpp - Example S oF ot

Some examples:

main_cat.info("This is some info");
main_cat.debug("This debug message will fail to write"),
main_cat.alert("All hands abandon ship");

/* you can log by using a log() method with a priority */
main_cat.log(log4cpp::Priority::WARN, "This will be a logged
warning"”);

/* this would not be logged if priority == DEBUG, because the
category priority is set to INFO 7/
main_cat.log(priority,"Importance depends on context");

Other example in the cited paper (see Bibliography) 30

i

Log4cpp — Logfile Example S0 o7 Comptig

A tipical logfile:

995871335 INFO main_cat : This is some info

995871335 PANIC main_cat : All hands abandon ship
995871335 WARN main_cat : This will be a logged warning
995871335 ALERT main_cat : Importance depends on context
995871335 ERROR main_cat : And this will be an error
995871335 INFO main_cat : info

995871335 NOTICE main_cat : notice

995871335 WARN main_cat : warn

31

. . i
Defensive Programming and the & m
assert Macro

* Take a look at your code: in every part you
make a lot of assumptions about other parts

* Assertions are expressions you should evaluate
to be true at a specific point in your code

* |[f an assertion fails, you have found a problem
(possibly in the assertion, more likely in the
code)

e |t make no sense to execute after an assertion

fails
32

. . i
Defensive Programming and the & m
assert Macro

* Writing assertions makes your assumptions
explicit

* In C/C++ you can #include <assert.h> and
write the expression you want to assert as
macro argument

* With assert macros your program will be
aborted when an assertion fails

* An assertion failure is reported by a message

33

Advanced Software Development Engineering i

ACI| Debugging Technique ot of Camput

ACI, only a joke...

* The technigue name derive from Automobile Club
d'ltalia, an Italian organisation that helps with car
troubles...

34

i

ACI Debugging Technique ot of Camput

ACI, not only a joke...

 Based on a simple principle: the best way to learn
thing is to teach them wm -

In ACI debugging you find a bystander r ' E . :
and explain to her how your code INNOCENT
works YST&NDER y

o

i ;

This forces you to rethink your assumption and
explain what is really happening

It can be a form of peer review .

. i\C
Walking through the Code St o Comput

This technique is similar to the ACI technique.
The recipe: got

coffee?

* Print your code

* Leave your terminal

e GO to cafeteria

* Take the beverage of your choice, if possible
with caffeine and sugar

* Read your code and annotate it carefully

i

The Debugger o o ot

* When every other checking tool fails detecting
the problem, then it is debugger's turn.

* A debugger allows to work through the code
line-by-line to find out where and why it is
going wrong.

* You can interactively control the program run,
stop it at various times, inspect variables,
change code flow whilst running.

37

i
CERN

The Debugger o o ot

* |[n order to make use of a debugger, a
program must be compiled with debugging
information inserted (debugging symbols)

* Debugging symbols describe where the
function and variables are stored in memory

* An executables with debugging symbols can
run as a normal program, even if slightly
slower

38

. i
Breakpoints | of canputing

* Breakpoints stop a program when needed

- The program runs normally until it is about to
execute the piece of code at the same address of
the breakpoint

- at that point, the program drops back into the
debugger and we can look at variables, or
continue stepping through the code.

* Breakpoints are fundamental in interactive
debugging

39

. i
Breakpoints | of canputing

* Breakpoints have many options. They can be
set up:
— on a specific line number
- at the beginning of a function
- at a specific address
— conditionally

40

. i
Debugglng Commands g<|:El:‘0'\<|)|ofComputing

After stopping (e.g. at a breakpoint) every
debugger can:

* execute next program line stepping over any
function calls in the line

e execute next program line stepping into any
function calls in the line

* continuing running your program

41

. i
Watchpoints o canguig

 Watchpoints are a particular type of
breakpoints

* A watchpoint stops the code whenever a
variable changes, even if the line doesn't
reference the variable explicitly by name

* A watchpoint looks at the memory address of
the variable and alerts you when something is
written to it

42

i
CERN

Binary Split) o comptn

* |n large programs, adding breakpoints for
every iteration of the loop is prohibitive

* |t is not necessary to step through each one in
turn, but employ a techniqgue known as binary

split:
- We place a breakpoint after the first of the code
and run it.

- If the problem has not showed up, then it is likely
to be a fault with the last half.

43

i

Binary Split) o comptn

- From here, we can ask the question again,
reducing the area under test to the first or the
second quarter

- This question can be asked repeatedly until we're
down to just one line, or sufficiently small routine
that we can step through line-by-line

A binary split can limit the search area of a
1000 line program to just 10 steps!

44

DDD — GUI for gdb

File Edit “iew Program Commands Sfatus Source Data Help |
0:| 34 ¢ ® G4 e Ao Ea S i
= Lq-:-kup Firnd == B_rEE!.k lLiatch Pribit Di_Sp_Iay P_Il:lt' atitig s HETeTe Set Un_-:IiSLI
1 #L../7. . bash Eﬁﬁj A
2
3 fni '::' { =IB]
.4 r="fnl started”
& 5 if (($1 =10 1) ; then Interrupt
g fn2 "“testing 1" "2 3" =
7 return Step | Stepi
2 fi
3 Tet a=$1-1 et | et
10 me Lt | Finish
11 w="fn1 returning”
12 1 ? Caont | Hil
13
1% fn20) ¢ o oo
15 #="fn2 started" Unda | Fedao
16 echo "fn2: $1 §2" _ |
17 fna . Edit | hake
18 w="fn2 returning" "_ DDD: Backirace I —'—'—I
19
20 - Backirace
%12 nggﬂngum $1 §2" ##3 main) called from file “parm.sh' at Tine 0
23 %="fn3 returning" ##2 fr1() called from file “parm.sh’' at line 27
24 1 ##1 fr1 () called from file “parm.sh' at line 10
25 :0 in file “parm.sh' at line 5
26 w="main"
27 fnl 5
28 echo "exit 5" | bash
29 exit 0
30 #;:: Local VMariables; #=
31 #::: mode:ishell-=script ==
| hashdb<31> % a
declare — a="4" U o |
bashdb <40 % $1 = : i |
4
bashdb<d2» § = =
¥

A Enabling line numbers..dane.

CERN
School of Computing

Data
Display
Debugger

Powerful interface to
gdb with extra features

Try it on our
first example

45

Advanced Software Development Engineering i
CERN
School of Computing

Part |l

C/C++ Related Problems and Solvers

46

i
Part Three — C/C++ Related Fiali A
Problems and Solvers

A) Preprocessor
B) Dynamic Storage Allocation
C) System Call Examination

47

. i
C/C++ Build Process Srec i A

A brief review of steps involved in building and
running a program

- Preprocessing — header files, inclusion and
macro processing; output in pure G/C++ code

- Compiling — translation of pure C/C++ code
to assembly language

- Assembling — translation of assembly code
into binary object code

48

. i
C/C++ Build Process Srec i A

- Linking — linker combines a number of object
files and libraries to produce executables or
libraries

- Dynamic Loading - libraries (or library parts)
required by a dynamically linked executables
are loaded prior to actual running the
executables

49

i
CERN

Preprocessor O o Corputing

* The C/C++ preprocessor:

- expands macros
- declares dependencies
— drives conditional compilation
* Preprocessor operations are performed at

textual level. This can make tracking down
missing declaration difficult or lead to

semantic problem

50

i
Preprocessor O o Corputing

* |[f you suspect a preprocessing problem, let
the preproccessor expand the file for
examination

* Example: gcc -E

- Stops after the preprocessing stage without
running the compiler. The output is preprocessed
source code, which is sent to the standard output

51

i
CERN

Dynamic Storage Allocation ol o anputg

* In C/C++ you have to explicitly allocate and
deallocate dynamic storage (through
malloc/free or new/delete).

* [f memory is (de)allocated incorrectly, it can
cause problems at run time (e. g. memory
corruption, memory leak)

e Common errors are: trying to use memory that
has not been allocated yet; to access memory
already deallocated; deallocating memory
twice 50

. ,]
Memory Allocation Debugging o
Tools

When you have a memory problem, the best it
can happen is a program crash!!!

Basically two categories of tools:

* External libraries to be included and/or linked
- MEMWATCH
- Electric Fence

* Executables which controls program's run

- YAMD
- Valgrind 53

i
CERN

E I eCt ri C Fe n Ce School of Computing

* Electric Fence is C library for malloc debugging

* |t exploits the virtual memory hardware of the
system to check if and when a program
exceeds the borders of a malloc buffer.

* At the borders of such buffer, a red zone is
added. When the program enters this zone, it is
terminated immediately.

* The library can also detect when the program

tries to access memory already released.
54

. i
E I eCt rl C Fe n Ce gfmﬂ of Computing

* Because Electric Fence uses the Virtual
Memory hardware to detect errors, the
program will be stopped at the first instruction
that causes a certain buffer to be exceeded.

* Therefore it becomes trivial to identify the
Instruction that caused the error with a
debugger

* When memory errors are fixed, it is better to
recompile the program without the library.

55

i
CERN

Example — Memory Error o Comput

An array of 60 elements Is created.
The program tries to fill it with 100 elements

iInt main(int argc, char *argvf[])
{
double *histo;
histo = (double *)malloc(sizeof(double) *60));
for (inti=0;1<100; i++)
histo[i] =1 ™ i;
return 1;

}

Compile the program with:
g++ -g -lefence -Wall -o memerror memerror.cpp

56

i

Valgrind e tonpuig

* Valgrind checks every reading and writing
operation on memory, intercepting all calls to
malloc/free new/delete

* Valgrind can detect problems like:
— usage of uninitialised memory
- reading from / writing to freed memory

- reading from / writing beyond the borders of
allocated blocks

57

i

Valgrind e tonpuig

* Valgrind tracks every byte of the memory with
nine status bits: one for the accessibility and
the other eight for the content, if valid.

* As a consequence, Valgrind can detect
uninitialised and does not report false errors
on bitfield operations.

* Valgrind can debug almost all dynamically
linked ELF x86 executables without any need
for modification or recompilation.

58

i
CERN

Example — Memory Error o Comput

An array of 60 elements Is created.
The program tries to fill it with 100 elements

int main(int argc, char *argv[])
{
double *histo = new double[60];
for (inti=0;1<100; i++)
histo[i] =1 " I;
return 1,

}

Compile the program with:
g++ -g -Wall -o memerror memerror.cpp

59

i
Example — Memory Error oo f

valgrind --gdb-attach=yes --error-limit=no ./memerror

==3252== Invalid write of size 8

==3252== at 0x80483DA: main (memerror.cpp:9)

==3252== by 0x4026F9B1: libc_start_main (in /lib/libc.s0.6)
==3252== by 0x80482F0: ??? (start.5:102)

==3252== Address 0x410B2204 is 0 bytes after a block of size 480
alloc'd

==3252== at 0x4002ACB4: malloc (in
/usr/lib/valgrind/vgskin_memcheck.so)

==3252== by 0x80483A8: main (memerror.cpp:7)

==3252== by 0x4026F9B1: libc_start_main (in /lib/libc.s0.6)
==3252== by 0x80482F0: ??? (start.5:102)

==3252==

==3252== ---- Attach to GDB ? --- [Return/N/n/Y/y/C/c] ---- 60

i

Example — Forgetting the e f it

Initialisation

Consider the following
simple program

#include<iostream>

iInt main(int argc, char *argv[])

{
double K, I;
double interval = atof(argv[1]);
if (interval ==0.1) { k =3.14;}
if (interval ==0.2) {k=2.71;}
| = 5.0 * exp(Kk);
std::cout << "l =" << | << "\n";
return 1;

* Compile with:
g++ -Im -g -o val3 initial.cpp

* The error doesn't cause a
crash

* The user has to give an
argument as an input.

* |f the input value is not equal
to 0.1 or 0.2, the value is not
Initialized

* We may get unexpected
results

61

i
Example — Forgetting the e f it
Initialisation

valgrind --gdb-attach=yes --error-limit=no --leak-check=yes memerror

==3252== Invalid write of size 8

==3252== at 0x80483DA: main (memerror.cpp:9)

==3252== by 0x4026F9B1: _libc_start_main (in /lib/libc.s0.6)
==3252== by 0x80482F0: ??? (start.S5:102)

==3252== Address 0x410B2204 is 0 bytes after a block of size 480
alloc'd

==3252==at 0x4002ACB4: malloc (in
/usr/lib/valgrind/vgskin_memcheck.so)

==3252== by 0x80483A8: main (memerror.cpp:7)

==3252== by 0x4026F9B1: _libc_start_main (in /lib/libc.s0.6)
==3252== by 0x80482F0: ??? (start.5:102)

==3252== ---- Attach to GDB 7 --- [Return/N/n/Y/y/C/c] ---- 62

. i
Example — Tracking Memory oo o oot
Leak

#include <string>
using namespace std;
string &xform_string_copy(const string &input);

Typical Error

Returning a
Reference to

| o . a Dynamically
int main(int argc, char® argv[]) Allocated Object

{

std::string original("l am an automatic variable");
string& stringref = xform_string_copy(original);
}
string& xform_string_copy(const string &input)
{
string *xformed_p = new string("l will probably be leaked!");
//... maybe do some processing here ...

return *xformed_p; //Callers will almost never free this object. 53
}

L i
System Call Examination i

A System Call Tracer allows you to examine
problems at the boundary between your code
and operating system

* The tracer shows what system calls a process
makes (with parameters and return value)

* A tracer cannot tell you where a system call
was made in your code.

* The exact place has to be reconstructed

64

. i
strace, the Linux System Tracer s mu

» strace is a powerful tool which shows all the
system calls issued by a user-space program.

* strace displays the arguments to the calls and
returns values in symbolic form.

* strace receives information from the kernel
and does not require the kernel to be built in
any special way.

65

i
Strace example) o Compuin

#include <iostream> // for 1/O
#include <string> // for strings
#include <fstream> // for file 1/0
#include <cstdlib> // for exit()

using namespace std;

iInt main (int argc, char* argvi])
{
string filename;
string basename;
string extname,;
string tmpname,;
const string suffix("tmp");
66

i
Strace example) o Compuin

/* for each command-line argument (which is an ordinary C-string)*/
for (int i=1; i<argc; ++i)
{
filename = argv[i]; // process argument as file name
string::size_type idx = filename.find('."); // search period in name
If (Idx == string::npos)
{
// file name does not contain any period
tmpname = filename; // HERE IS THE ERROR
/tmpname = filename + "." + suffix;
}
else tmpname = filename;
// print file name and temporary name
// cout << filename << " => " << tmpname << endl; // USEFUL
} 67

i
Strace example) o Compuin

ifstream file(tmpname.c_str());
if (!file)
{
cerr << "Can't open input file \"™" << filename << ".tmp\"\n";
exit(EXIT_FAILURE);
}
char c;
while (file.get(c))
cout.put(c);

}

* Create a simple text file and run the program.
* The program won't find the input file...

i
Strace example) o comptn

... but there it is!

[~ ‘adragnapecatias3:~/Datal/inverted CS Clexamples - Shell - Konsole

session Edit View Settings Help |

Ladragna@pcatlas3 examplesl$ 11

total 56

“Tw-r——r—— adragna atlas 1352 :57 charset.cpp
“TW-r——r—— adragna atlas 4928 :58 charset.out
“Tu-r——r—-— adragna atlas 145 :56 list.tmp

N b e adragna atlas 1672 :2b6 strace.c
“Tw-r——r—— adragna atlas 1816 :42 strace.c”
“ru-r——r—— adragna atlas 8776 :16 strace.out

“TWXr—Xr—x adragna atlas 19375 :27 stracex
Ladragna@pcatlas3 examplesl$ stracex list

Can't open input file "list.tmp”

[adragna@pcatlas3 examplesl$ |}

@New ||E} Shell| |E }Ehell Bla. 2
b

i
CERN

Strace example) o Compuin

Let's start strace: strace —-o strace.out stracex list

= /70

brk(0x804a76¢) = 0x804a/6¢c
brk(0x804b000) = 0x804b000
open("list", O _RDONLY) =-1 ENOENT (No such file or directory)
write(2, "C", 1) =
write(2, "a", 1) =
write(2, "n" 1) = 1
write(2, "\, 1) =
write(2, "t", 1) =
write(2, " ", 1) =
write(2, "o", 1) =
write(2, "p", 1) =
wrlte(2 "e", 1) =

(2,"n", 1)

i
CERN

ACkn OWIGdg mentS School of Computing

| would like to thank very much J.H.M. Dassen and |.G.
Sprinkhuizen-Kuyper for letting me use some of their material
on debugging techniques

A big thank also to P. F. Zema, my collegue in ATLAS, for
useful technical comments and ideas exchange on Linux

debugging.

Thanks to E. Castorina for a critical review of the lecture slides

/1

i
CERN

Bibliography 1 o orpatg

* For more famous bugs, take a look to Prof. G Santor's site:
http://infotech.fanshawec.on.ca/gsantor/Computing/FamousB
ugs.htm

* J.H.M. Dassen, |.G. Sprinkhuizen-Kuyper, Debugging C and
C++ code in a Unix environment, Universiteit Leiden, Leiden,
1999

 T. Parr, Learn the essential of debugging, IBM
developerWorks journal, Dec 2004

* S. Best, Mastering Linux debugging techniques, |BM
developerWorks journal, Aug 2002

* S. Goodwin, The Pleasure Principle, Linux Magazine 31
(2003) 64 - 69 75

i
CERN

Bibliography 1 o orpatg

* gdb User Manual

* gcc User Manual

* Valgrind User Manual

* F. Rooms, Some advanced techniques in C under Linux

* W. Mauerer, Visual Debugging with ddd, The Linux Gazette,
Jan 2001

M. Budlong, Logging and Tracing in C++ Simplified, Sun
Developers Technical Articles, 2001

 S. Goodwin, D. Wilson, Walking Upright, Linux Magazine 27
(2003) 76 - 80

* J. World, Using Log4c, online at http://jefficus.usask.ca 73

Advanced Software Development Engineering l-
CERN
School of Computing

Backup Slides

74

i
CERN

Localising a Bug o o ot

* “You know what your code should do, you
notice it does not do that so noticing a bug is

easy’, you might say...

* Noticing a bug implies testing, so this
easiness is completely deceptive

* |[n case of a test failure you have to see what
went wrong, so prepare your tests carefully

/5

. i
Introduction e e

* When your program contains a bug, it is likely
that, somewhere in the code, a condition you
believe to be true is actually false

* Finding your bug Is a process of confirming
what you believe is true until you find
something that is false.

* “My program doesn't work” is not an
acceptable statement

/6

. i
Introduction e e

* The importance of the way how to find errors
and fix them in the life cycle of a software
product is a task whose importance cannot be
stressed enough over and over

* Finding errors is not just an unavoidable part
in the development cycle but vital part of
every software system's lifespan.

77

