Charge production with Photo-injectors PHIN JRA

Andrea Ghigo and Roberto Losito

Institute	Acronym	Country	Coordinator	PHIN Scientific Contact	Associated to
CCLRC Rutheford Appletone Lab. (22)	CCLRC-RAL	UK	P. Norton	I.N. Ross	
CERN Geneva (19)	CERN	СН	H. Haseroth	G. Suberlucq	
CNRS-IN2P3 Orsay (3)	CNRS-LAL	F	T. Garvey	G. Bienvenu	CNRS
CNRS Lab. Optique Appl. Palaiseau (3)	CNRS-LOA	\mathbf{F}	T. Garvey	V. Malka	CNRS
ForschungsZentrum ELBE (10)	FZR-ELBE	D	J. Teichert	J. Teichert	
INFN-Lab. Nazionali di Frascati (11)	INFN-LNF	I	S. Guiducci	A. Ghigo	INFN
INFN- Milan (11)	INFN-MI	I	C. Pagani	I. Boscolo	INFN
Twente University- Enschede (13)	TEU	NL	J.W.J. Verschuur	J.W.J. Verschuur	

- **▶** Development of the high charge e⁻ beam (drive beam) for the RF power source of the two-beam linear collider CLIC (CERN).
- ➡ Realisation of high brightness e⁻ beam for CLIC main beam studies and for tests of linear collider sub-systems.
- ➡ Realisation of the first high power photoinjector that uses a photocathode, laser driven, in a superconducting RF gun for application in ELBE (Rossendorf) and possible use in TESLA Test Facility (Desy).
- Study of the TESLA electron source.
- Realisation of new electron source for NEPAL (Orsay) test stand.
- Realisation of the new injector for TEU-FEL (Twente).

PHIN Objectives

- * Study and model the beam dynamics in the RF gun.
- Develop Normal and Super Conducting RF-guns for medium-high charges.
- Optimize the RF guns in order to satisfy thermal constraints and vacuum requirements of photo-cathode.
- Optimize the combined system laser-photo-cathode for various applications, seeking for a trade-of between cathode lifetime, laser power and wavelength.
- Study and develop optical and laser installations for the generation of the various space and time beam-distributions related to the various PI applications.
- Investigate means of generating complex timing, and of shaping laser pulses.
- Develop necessary instrumentation.
- Make the necessary developments to improve existing installations in order to satisfy the objectives.

Deliverables 1/1/2006 - 30/6/2007

PHIN	23	Two 3 GHz RF guns construction	Prototype	WP4	CNRS-Orsay	18
PHIN	22	Laser RF feedback development	Report	WP3	CERN	21
PHIN	10	Photocathode ready for 3 GHz RF guns	Prototype	WP2	CERN	25
PHIN	11	UV generation and feedback: overall system assembly and tests	Prototype	WP3	CCLRC	30
PHIN	12	SC RF gun realisation Prototype WP4		WP4	FZR	26
PHIN	13	SC RF gun test	Report	WP4	FZR	36
PHIN	20	Pulse shaping comparison	Prototype	WP3	INFN – LNF, MI	22
PHIN	14	CTF3 3 GHz RF gun test at CERN	Report	WP4	CNRS. CERN	33
PHIN	27	Superconducting cavity photocathode tests	Report	WP2	FZR	37
PHIN	28	Final report on 100 MeV laser driven plasma source R&D	Report	WP2	CNRS-LOA	48

JRA2-PHIN schedule for the next 18 months

Budget for the next 18 months [January 1th 2006 to June 30 2007]

JRA2	Participant (cost model)	Permanent Staff direct cost ONLY (Euros)	Additional Staff direct cost ONLY (Euros)	Durable Equipment direct cost ONLY (Euros)	Prototyning	Travel direct cost ONLY (Euros)	All Direct Cost	Subcontract	Indirect cost	Expected costs including indirect cost (Euros)	Requested funding (Euros)
	CNRS-Orsay	384,375	35,000	90,000	10,000	5,000	524,375	0	104,875	629,250	175000
3	CNRS-LOA	120,000	60,000	0	112,000	10,000	302,000	0	60,400	362,400	105000
	CNRS(FCF)	504,375	95,000	90,000	122,000	15,000	826,375	0	165,275	991,650	280000
9	FZR(AC)	0	45,917	0	39,858	0	85,775	0	17,155	102,930	102930
10	INFN-LNF	0	80,000	0	33,333	10,000	123,333	0	24,667	148,000	148000
	INFN-Mi	0	80,000	0	25,000	6,667	111,667	0	22,333	134,000	134000
	INFN(AC)	0	160,000	0	58,333	16,667	235,000	0	47,000	282,000	282000
11	TEU(FC)	35,910	167,580	0	45,000	5,000	253,490	0	_	253,490	101773
17	CERN (AC)	0	42,500	0	940,000	18,417	1,000,917	0	200,183	1,201,100	779200
20	CCLRC-RAL (FC)	13,719	28,843	0	0	6,620	49,182	0	59582	108,764	11000
	Grand total	554,004	539,840	90,000	1,205,192	61,703	2,450,739	0	489,195	2,939,934	1,556,903