

Development of a compact single shot electron spectrometer

Yannick Glinec, Jérôme Faure and Victor Malka Laboratoire LOA, ENSTA – CNRS – École Polytechnique, 91761 Palaiseau cedex, France

Compact electron accelerator

Major enhancements of the electron beam properties:

- Small source size
- Low divergence
- Quasi-monoenergetic
- Short duration
- High charge

In the interaction chamber

New spectrometer:

- Single shot measurement
- Spectrum and divergence
- Measurement of the charge at high energy

This diagnostic can be used because the electron beam is very collimated.

Measurement of a quasi-monoenergetic electron beam

Limitation due to the spectrometer resolution

500 pC +/-200 pC in the bump at 170 MeV

Faure *et al.*, Nature **431**, p541 (2004)

Outline

I – Design of a spectrometer for higher energies

Permanent magnetic field.

II – Analytical calculations

- Trajectories of electrons
- Spectrometer resolution
- Relative and abolute calibration of the number of electrons

III – Application to an experimental electron beam

Quasimonoenergetic electron spectrum

Comparison of the two magnets

B=1 T

Previous Magnet home made, up to 100 MeV

Design of a new magnet up to 400 MeV

Datasheet

Constraints:

- Gap = 1cm
- Magnetic field ~ 1T
- Length = 10 cm
- Large slit required
- Compact spectrometer

Solution:

• Good homogeneity due to a special arrangement of magnet poles

Data from the manufacturer

Analytical calculations

- Trajectories of an electron in a permanent magnetic field
 - Radius of curvature (relativistic electron):

$$R = \frac{E_0}{B_m e c}$$

 E_0 Initial kinetic energy

 B_m Magnetic field

e Charge of the electron

c Celerity of light

- Assumptions:
 - The magnetic field is uniform in a rectangular area
 - The relativistic incomming electron is perpendicular to the magnet's surface.

Coordinates

$$\begin{vmatrix} x_P \\ y_P \end{vmatrix} = \begin{vmatrix} L_m \\ R - \sqrt{R^2 - L_m^2} \end{vmatrix} \qquad \begin{vmatrix} x_C \\ y_C \end{vmatrix} = \begin{vmatrix} \frac{x_P^2 + y_P^2}{2 x_P} \\ 0 \end{vmatrix} \qquad \begin{vmatrix} x_N \\ y_N \end{vmatrix} = \begin{vmatrix} D_l - y_l \tan(\theta_l) \\ (D_l - x_C) y_P \\ \hline x_P - x_C + y_P \tan(\theta_l) \end{vmatrix}$$

Equivalent magnetic field

• The real magnetic field spreads outside the magnet. The introduction of an equivalent magnetic field allows the use of analytical formulaes.

$$B_m^{max} = 1.0 T$$
 \longrightarrow $B_m^{eff} = 1.2 T$

• Not valid for electrons below 100 MeV who travel in the gradient of the magnetic field

Resolution

• The resolution is limitted by the size of the electron beam on the detector. The corresponding energy range at a given energy E_0 is:

$$\frac{\delta E_0}{E_0} = \frac{\delta_s}{E_0} \div \frac{d s_N}{dE_0}$$

$$s_N = y_N / \cos(\theta_l) \text{ the distance along the Lanex}$$

$$\delta_s \text{ the size of the electron beam on the detector}$$

• The equivalent at high energy is

$$\frac{\delta E_0}{E_0} \sim \frac{(D_s + D_l)R\theta_s}{(D_l - L_m/2)L_m} \propto R \propto E_0$$
 divergence

Energy [MeV]	20	50	100	200	400
«home-made» magnet	6%	14%	27%	53%	-
10cm magnet	-	-	5%	10%	20%

Resolution for two different configurations

Detector composition

Item	em Material		Density (g/cc) Thickness (cm)						
Laser Shielding									
Shielding	Aluminium	2,70	0,0100						
Kodak Lanex Fine Screen									
protective coating	cellulose acetate	1,32	0,0010						
plastic subtrate	Poly(ethylene terephtalate)	1,38	0,0178						
scintillator	Gd2O2S + urethane binder	4,25	0,0084						
protective coating	cellulose acetate	1,32	0,0005						

Composition of the scintillating screen

The surface loading of Gadolinium Oxysulfide in the urethane binder is 33 mg/cm²

Schach von Wittenau *et al.*, Med. Phys. **29** pp. 2559-2570 (2002)

Absolute calibration

Phosphor layer: conversion

We assume that the conversion into visible light is proportionnal to the energy deposited in the scintillator layer

$$\frac{dN_{cr}}{dN_{el}} = \frac{1}{E_{ph}} \varepsilon \frac{dE}{dx} \delta x$$

 $\delta x = h_s / \rho_{GOS}$ effective phosphor thickness ε efficiency

Transport: photon collection

The transmission at the phosphor boundary and the number of photons collected by the lens of the Andor CCD

$$\frac{dN_{coll}}{dN_{cr}} = \zeta g(\theta_{CCD}) \delta \Omega q_l q_Q q_{IF}$$

 ζ output transmission factor $g(\theta_{CCD})$ lambertian law

Detection by the CCD: number of counts
The yield of the Andor CCD camera

$$\frac{dN_{count}}{dN_{coll}} = \frac{QE}{r}$$

$$\frac{dN_{el}}{dE} dE = Counts \div \left[\frac{dN_{counts}}{dN_{coll}} \frac{dN_{coll}}{dN_{cr}} \frac{dN_{cr}}{dN_{el}} \right]$$

List of parameters

Parameter	Symbol	Value	Parameter	Symbol	Value
Spectrometer			Detection System		
Magnet			Solid Angle	$\delta\Omega$	2.0e-3 sr
Equivalent magnetic field	Bm	0.41 T	CCD angle	θ ccd	15°
Magnet length	Lm	5 cm	Lens	ql	0,95
Magnet width	Lm	2.5 cm	Quartz	$\mathbf{q}_{\mathbf{q}}$	0,95
Magnet shift	δlm	1.3 cm	Interference filter	qIF	0,2
Magnet-Lanex length	Dl	17 cm	Pixel size on the lan	exLpix	0.28 mm
Lanex					
Lanex angle	θ1	55°	Electron Source		
Efficiency	3	0,034	Source-Magnet leng	gthDs	6 cm
Surface Loading	hs	33 mg/cm2	Divergence	θ s	10 mrad
Phosphor density	ρGOS	7.44 g/cm3			
Photon energy	Eph	2.27 eV			
Transmission factor	ζ	0,22	D ' 1'	*/1 %	# T7 1
ICT			Private discussion	ns with N	1. Kando
ICT diameter	Dict	10 cm	Needs further inv	estigatio	n

Example of image analysed The quasi-mono energetic spectrum

Mismatch of the two curves for several reasons:

- ICT sensitive to electrical noise
- Efficiency of the lanex estimated from data of collabaorators
- Saturation effects in the phosphor film

Conclusion and Perspectives

I – Needs of a compact single shot spectrometer

- Requirements
 - Acceleration of electrons up to 200 MeV.
 - Adapted to high repetition rate: no film processing.
- Solution chosen
 - Design and purchase of a strong permanent magnet
 - Purchase of 16 bits Andor CCD cameras.
 - Development of analytical formulaes for spectrum deconvolution
 - Purchase of a hall probe for magnet characterization

II – Further developments

- The present work will help to design a larger magnet for GeV acceleration experiments
- Estimation of the efficiency of the scintillator

Example of possible configuration for a 1 GeV-energy electron spectrometer

- Longer magnet requires larger detector to get the full spectrum
- The electrons may exit the magnetic field by the edges, in order to reduce the deflection angle for low energies
 - Beware that the each pixel on the detector corresponds to a single energy.
- A third camera with less pixel depth to monitor the electron beam axis before the magnets.
 - Valid if the scattering angle is smaller than the natural divergence. Depends on the phosphor thickness. OTR may be required.

Transmission of the interference filter

