Neutrino mixing at high energy neutrino telescopes

Pasquale D. Serpico
MPI -Munich
CARE '05 - ECFA/BENE

Werner-Heisenberg-Institut

1x1px 2h

Theoretical Physics Division

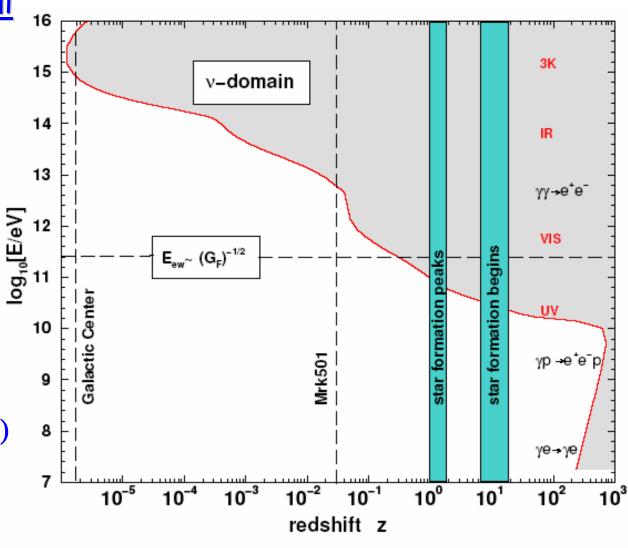
Overview of the Talk

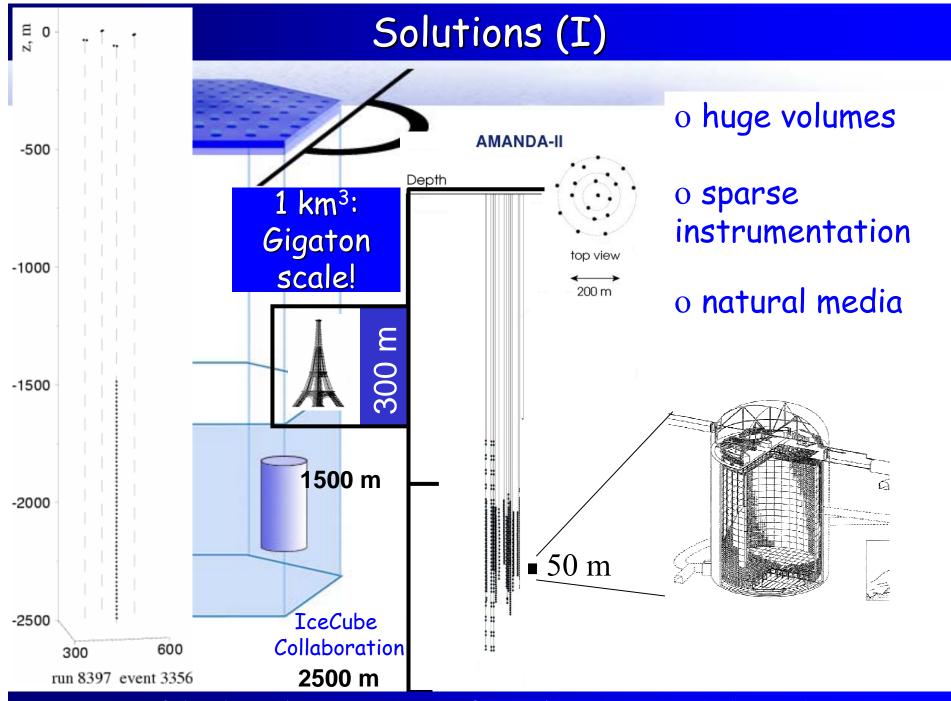
· Neutrino telescopes: an overview

Neutrino mixing at neutrino telescopes

• "Galactic β -beams" and muon-damped sources

Conclusions


Neutrino-telescopes: an overview


High-Energy v astronomy: a new sky

Neutrinos: a powerful tool for high energy astrophysics

- +)Directional signal (differently from CR)
- +)No absorption (differently from γ)
- +) HEv guaranteed (HECR & HEy observed)

Main problem -)Small σ

Status of Optical Cherenkov Telescopes

80's: DUMAND R&D

90's: BAIKAL, AMANDA, NESTOR

2k's: ANTARES, NEMO_R&D

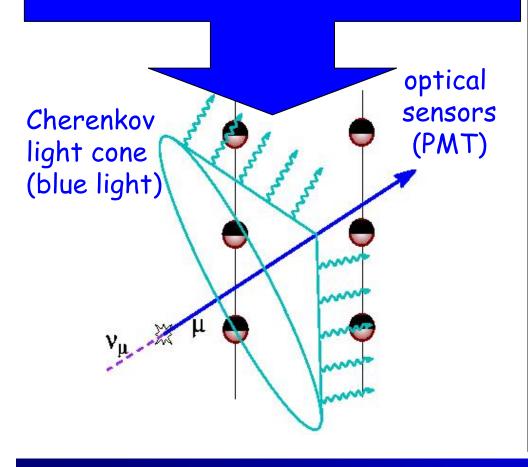
<2010: ICECUBE (km³ at the SouthPole)

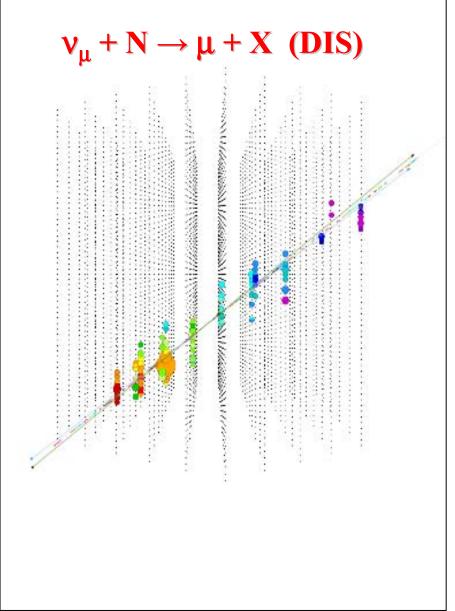
.....? Mediterranean km³ (Km3Net)

Mediterranean km³

AMANDA ICECUBE

Flavour discrimination (I)

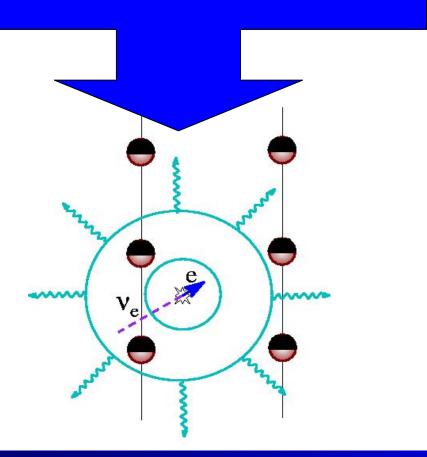

1st detection channel: O(km) μ tracks

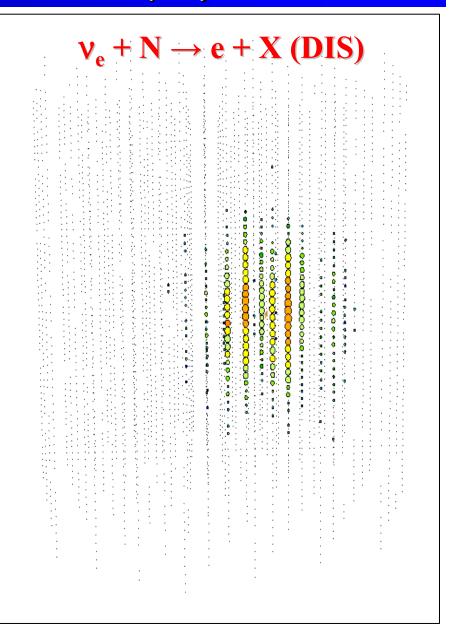

directional error: $\sim 1^{\circ}$

 $\sigma[\log_{10}(E/TeV)]$: ~ 0.3

coverage: 2π

energy range: ~ 50 GeV to 100 PeV

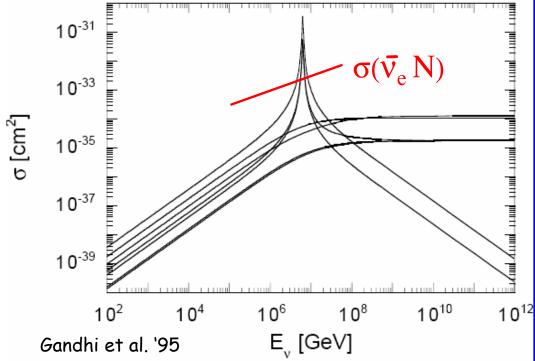

Flavour discrimination (II)

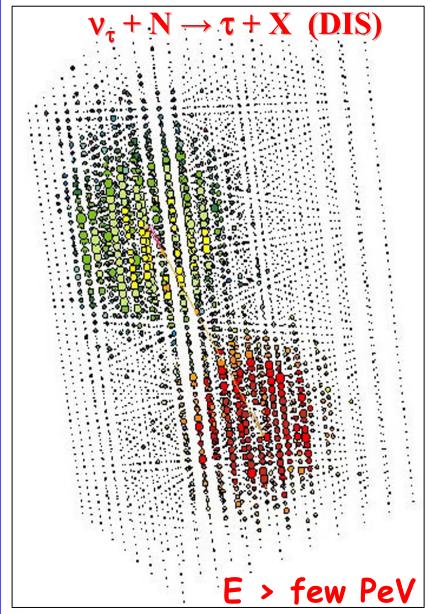

2nd detection channel: cascades from $v_e \& v_\tau$ CC + all flavors NC

~ 10-40° directional error:

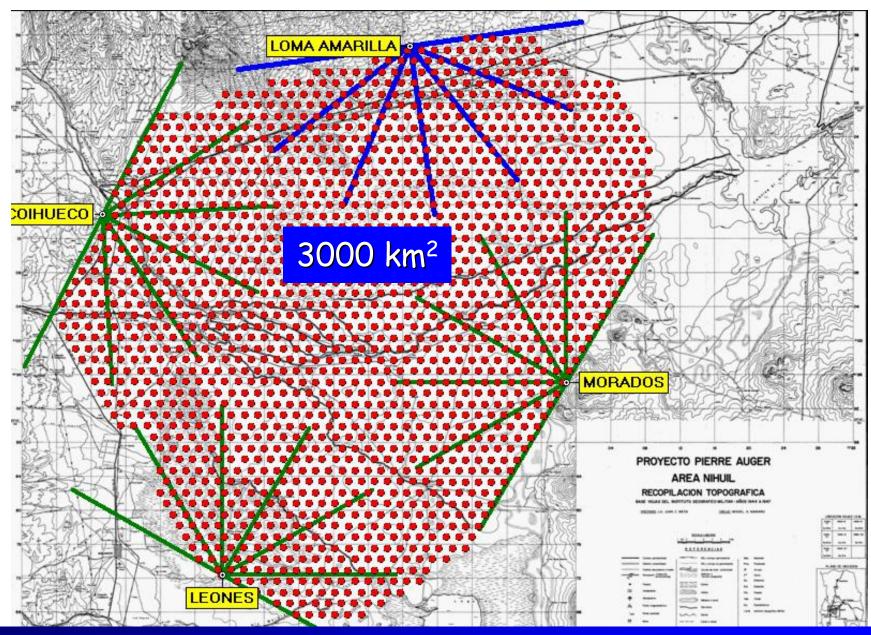
 $\sigma[\log_{10}(E/TeV)]$: ~ 0.1

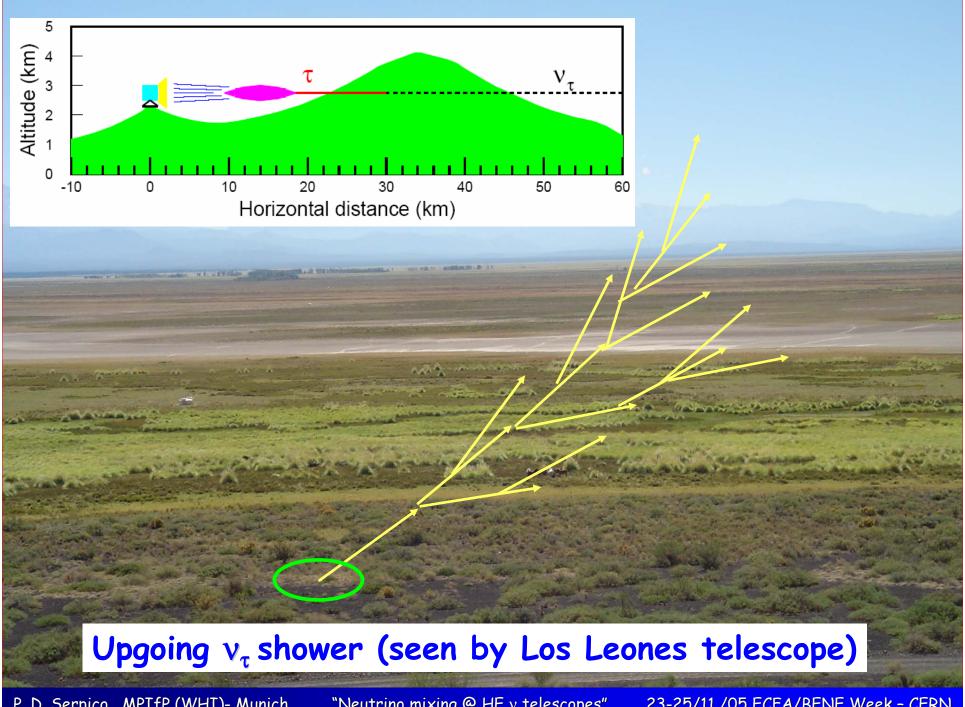
coverage: 4π energy range: \sim 1 TeV to 100 PeV



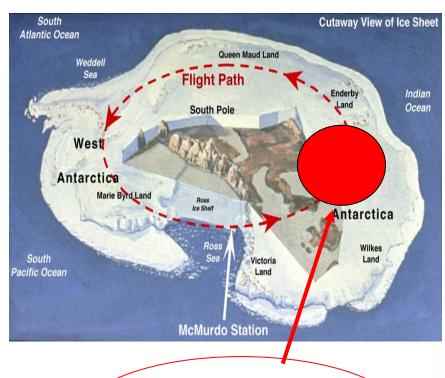

Flavour discrimination (III)

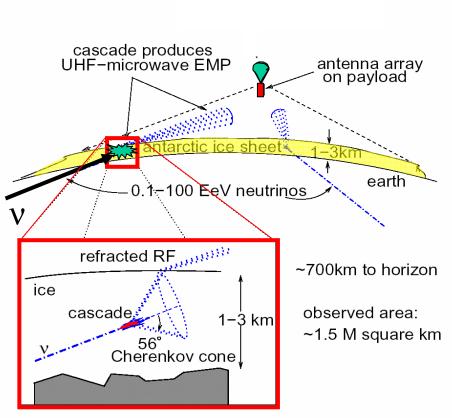
"Glashow Resonance"


$$\bar{v}_e^+ e^- \rightarrow W^- \rightarrow anything$$


Unique to \bar{v}_e σ enhanced at E \approx 6.3 PeV

Solutions (II)




Solutions (III)

ANtarctic Impulsive Transient Antenna

600 km radius, 1.1 million km²

v-mixing at v-telescopes

v-telescopes and v-mixing

Astrophysical v fluxes come from

$$\begin{array}{l} pp{\longrightarrow}\pi X \\ p\gamma{\longrightarrow}\pi X \end{array}$$

flavour ratios at source $\rightarrow \varphi_e : \varphi_\mu : \varphi_\tau \approx \frac{1}{3} : \frac{2}{3} : 0$ at Earth after oscillations $\rightarrow \varphi_e : \varphi_\mu : \varphi_\tau \approx \frac{1}{3} : \frac{1}{3}$

Standard Paradigm: Neutrino mixing studies hopeless at high energy neutrino telescopes

I shall try to argue that this is misleading!

v-telescopes and v-mixing

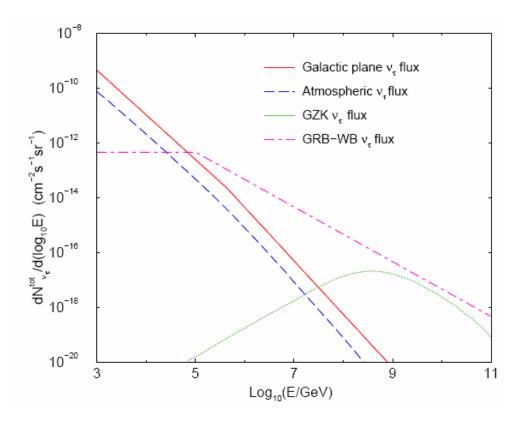
1. Standard oscillation phenomenology "rescues" signals, allowing some interesting measurements

2. Matter effects might imply observations sensitive to Δm^2 's, e.g. to hierarchy

3. Input from v-mixing very important for diagnostics of astrophysical sources

Only standard oscillation

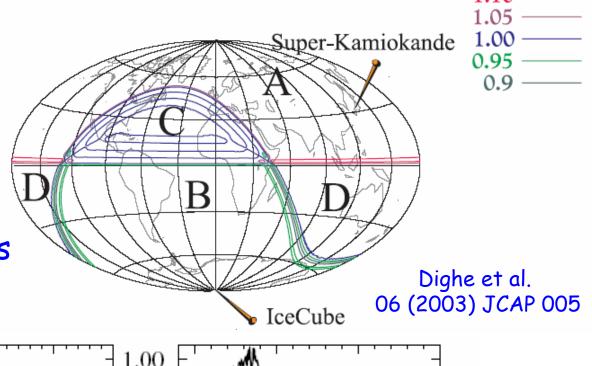
4. "Peculiar" (but not "exotic"!) neutrino sources may exist sensitive to mixing parameters (including θ_{13} and δ_{CP})

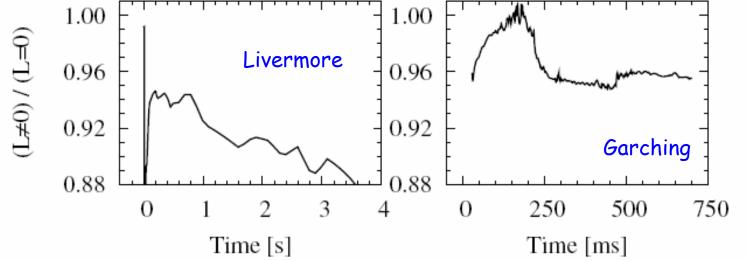

A "rescued" signal: The Galactic diffuse v_{τ}

v-flux from CR hitting Galactic matter develops a large v_{τ} -component via oscillations.

Atmospheric v background is o softer (relevant energy losses of mesons) o v_{τ} -suppressed (prompt v_{τ}) $L_{osc}(E \approx TeV-PeV)$ is too large

Event rate of $O(1 \text{ yr}^{-1} \text{ sr}^{-1})$ for two separable and contained showers with $E \approx \text{PeV}$ in a km³ v-telescope


H. Athar et al. APP 18 (2003) 581



Independent confirmation of the (large) mixing in the $\mu-\tau$ sector via v_{τ} appearence

Earth matter effect with a SN at IceCube

Flux vs. time at IceCube + SK (or HK) can detect Earth matter effects (normal hierarchy and $\sin^2 \theta_{13} > 10^{-3}$) Exploits high statistics for a galactic SN

v-telescopes, the Glashow resonance and θ_{12}

"Standard" astrophysical sources produce both v and \overline{v} via

$$pp \rightarrow \pi X$$
 $p\gamma \rightarrow \pi X$

Both give flavour ratios at production

$$\phi_e:\phi_u:\phi_\tau\approx\frac{1}{3}:\frac{2}{3}:0$$

but py mainly gives v_e (via π^+), while pp almost equally v_e and \bar{v}_e

The measurable ratio

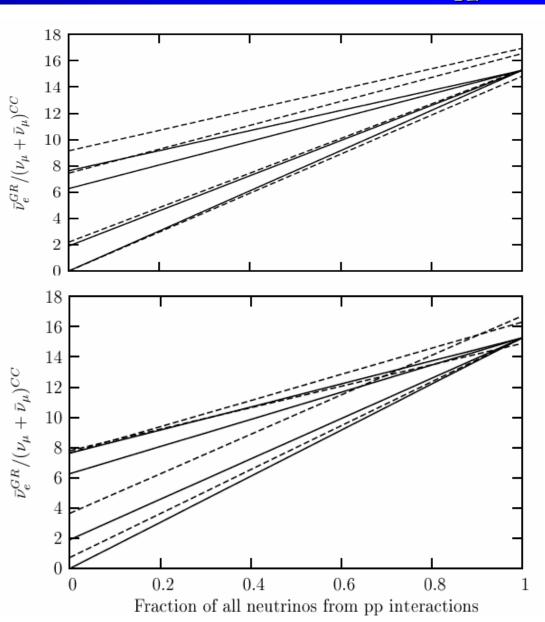
$$R^{GR} \equiv \bar{\nu}_e^{GR}/(\nu_\mu + \bar{\nu}_\mu)^{CC} \approx 15 [\sin^2 2\theta_{12} + \kappa (1 - 0.5 \sin^2 2\theta_{12})]$$

$$(\theta_{13} = 0^\circ \text{ and } \theta_{23} = 45^\circ)$$

is sensitive both to mixing angles (mainly θ_{12}) AND to the production mechanism (% of pp "contamination" $\equiv \kappa$) (Bhattacharjee & Gupta, astro-ph/0501191)

v-telescopes, the Glashow resonance and θ_{12}

$$----- \theta_{23} = 40^{\circ}$$


$$----- \theta_{23} = 45^{\circ}$$

$$\theta_{13} = 0^{\circ}$$

$$\theta_{12}$$
=45°
 θ_{12} =32.5°
 θ_{12} =15°

 θ_{12} =0°

$$\theta_{12}$$
=45°
 θ_{12} =32.5°
 θ_{12} =15°
 θ_{12} =0°

"Peculiar" high energy neutrino (re)sources

- 1. neutrons beams from nuclear dissociations \rightarrow pure \bar{v}_e beam
- 2. pion beams from muon damped sources \rightarrow pure $\nu_{\mu} + \bar{\nu}_{\mu}$ beam

In both cases, the observable ratio of μ tracks to e+ τ showers

$$R = \frac{\phi_{\mu}}{(\phi_{e} + \phi_{\tau})}$$

is sensitive to crucial information of the neutrino mixing matrix !!!

P.S. & M. Kachelrieß PRL 94, 211102 (2005) [hep-ph/0502088], P.S., work in progress

Neutrino Mixing - Probabilities

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{\mathrm{CP}}} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{\mathrm{CP}}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{\mathrm{CP}}} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{\mathrm{CP}}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{\mathrm{CP}}} & c_{13}c_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$s_{lk} \equiv Sin \ \theta_{lk}$$
, $c_{lk} \equiv Cos \ \theta_{lk}$

- Matter effects negligible
- $\cdot d_{\text{source}} >> L_{\text{osc}}$: Terms sensitive to Δm^2 , $sign(\delta_{CP})$ average out
- ·Also imply equal expressions for neutrinos and antineutrinos

$$P_{\alpha\beta} \equiv P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 2\sum_{i>k} \text{Re}(U_{\beta j}U_{\beta k}^* U_{\alpha j}^* U_{\alpha k})$$

Flavor ratios at detector
$$(\phi^D_\beta) = \sum_\alpha P_{\alpha\beta} \phi_\alpha$$
 Flavor ratios at source

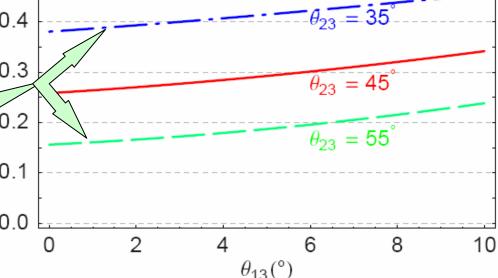
"Galactic B-beams"

Sensitivity to θ_{13} (and θ_{23})

$$R \equiv \frac{\phi_{\mu}}{(\phi_{e} + \phi_{\tau})} = \frac{P_{e\mu}}{P_{ee} + P_{e\tau}}$$

$$P_{ee} \approx \frac{5}{8} - \frac{5}{4}\theta_{13}^{2}$$
 $\theta_{12} = \pi/6$ $\theta_{23} = \pi/4$

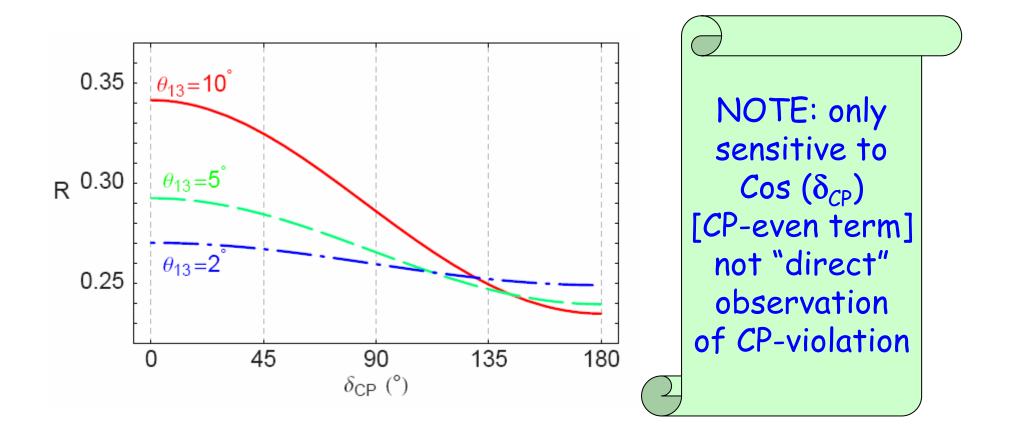
$$P_{e\mu} \approx \frac{3}{16} + \frac{\sqrt{3}}{8} \theta_{13} \cos \delta_{\rm CP} + \frac{5\theta_{13}^2}{8}$$

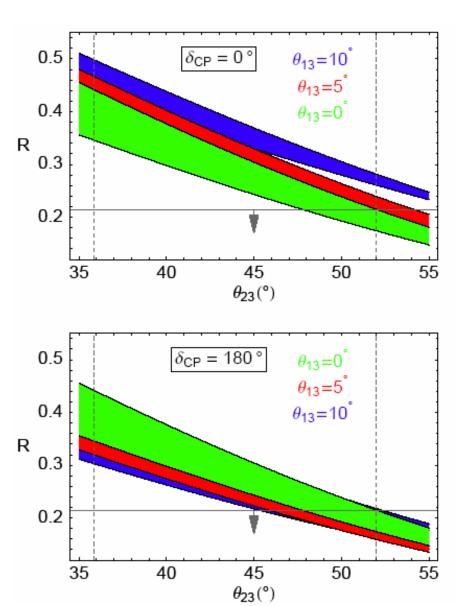

Variation of order 25-50% in $0^{\circ}<\theta_{13}<10^{\circ}$, depending on θ_{23} (θ_{12} =32.5°, best case δ_{CP} =0)

 $P_{e\tau} \approx \frac{3}{16} - \frac{\sqrt{3}}{8}\theta_{13}\cos\delta_{\rm CP} + \frac{5\theta_{13}^2}{8}$

For θ_{23} =45°, R is reduced even to $\frac{1}{2}$ of the canonical R=0.5 $_{\rm R}$ $^{0.3}$

Note the


0.3 0.2 0.1 0.0


octant dependence!

Sensitivity to δ_{CP}

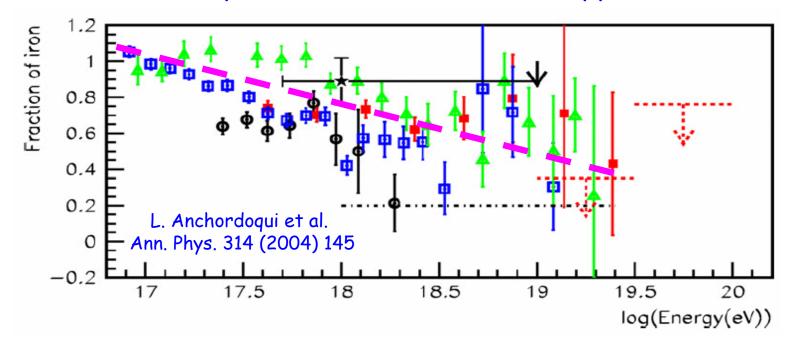
For experimental best fit θ_{12} =32.5° and θ_{23} =45°, the flux ratio has a maximal variation of about 30%

Determination of the octant of θ_{23}

$$P_{ee} \approx \frac{5}{2}$$
,

$$P_{ee} \approx rac{5}{8},$$
 $P_{e\mu} \approx rac{3}{8}c_{23}^2 + rac{\sqrt{3}}{4}s_{23}\,c_{23}\,s_{13}\,c_{\delta},$ $rac{3}{2}\sqrt{3}$

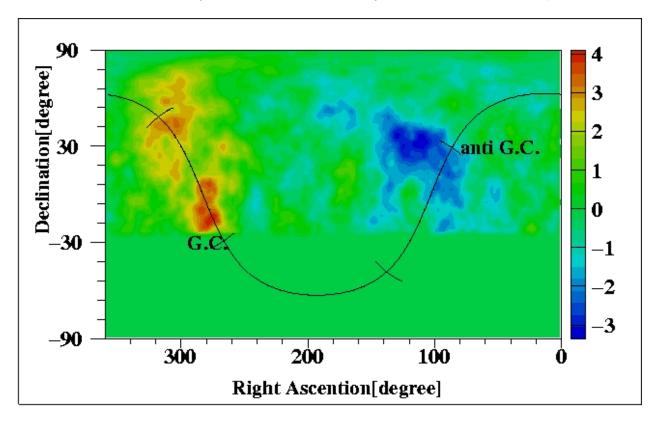
$$P_{e\tau} \approx \frac{3}{8}s_{23}^2 - \frac{\sqrt{3}}{4}s_{23}c_{23}s_{13}c_{\delta},$$


$$R<0.21 \rightarrow \theta_{23} > \pi/4$$

Backgrounds can only increase R!

Model-independent statement

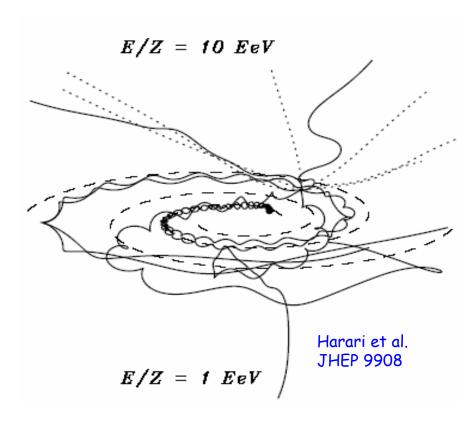
Neutrinos from nuclei in the Galaxy


In cosmic rays, at $E \approx O(1 \text{ EeV})$ a transition between High-Z nuclei of the Galactic spectrum (acceleration and confinement requirements are alleviated) and p-dominated Extragalactic contribution is expected. Recent CR data support this scenario

n from nuclei dissociations in matter and γ -fields in (a few) galactic accelerators might become visible at EeV. Favored regions: Nuclear Bulge, dense clouds (high B-field) ...

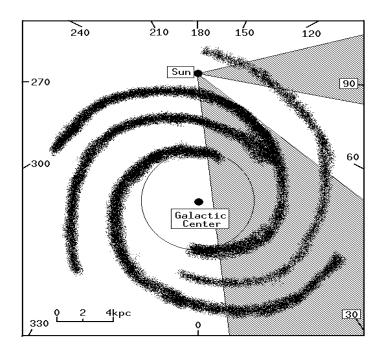
Hint: A Galactic Plane excess in EeV Cosmic Rays

AGASA reported a 4% excess in UHECR around 10¹⁸ eV (1 EeV) from a couple of hot-spots in the galactic disk



Similar, indepentent hints also from SUGAR and Fly's Eye (but negative results from preliminary analysis of Auger data)

The birth of Galactic neutron Astronomy?


Neutrons are natural candidates to explain the signal

no GMF bending (huge for p too!)

Energy-range of the Signal ≈ boosted n-lifetime

 $c\tau_n \approx 10 \text{ kpc } (E_n / \text{EeV})$

From Neutrons to Neutrinos

The existence of galactic neutron beams would imply $\overline{\mathbf{v}}_{e}$ fluxes up to the PeV from n-decay. (E_v / E_n ~ Q / m_n ~ 10⁻³ \rightarrow E_v ~ PeV, for E_n ~ EeV)

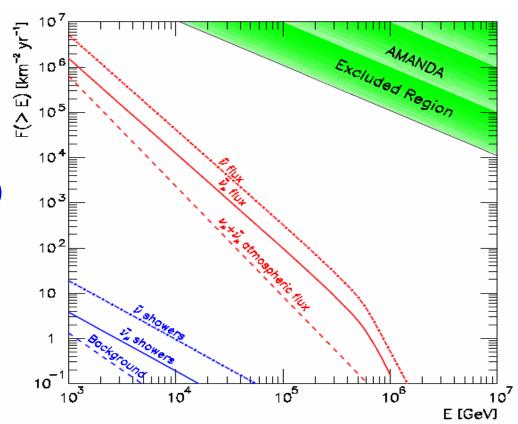
If neutrons come from nuclear photodissociations on Optical/UV photons, the flux is likely to extend down to (at least) TeV region

This energy range nicely fits the energy-window accessible to v-telescopes under construction.

Notice that n are undetectable as CR anisotropies below E~ 10^{17} eV: similar sources of lower Energy might show-up only in the $\bar{\nu}_e$ channel !!!

A model of galactic neutron beams

Detectability in IceCube


Normalizing to the CR anisotropy, ~ 20 events per year from Cygnus region in IceCube (under construction at the South pole)

Standard v oscillation phenomenology implies

 \approx 4 v_{μ} /yr tracks in 0.7° circle (Atm. background is~2.3 v_{μ} /yr)

≈ 16 $v_e + v_\tau$ showers/yr in 25°, cone, due to poor resolution. (Atm. background *fluctuation* is~12 $v_e + v_\tau$ /yr)

In a few years, IceCube should attain discovery sensitivity for $n \rightarrow \nu_e \rightarrow \nu_u!!!$

L. Anchordoqui, H. Goldberg, F. Halzen & T.J. Weiler PLB 593 (2004) 42

How large is the expected "pion contamination"?

Viable models of $A \rightarrow n \rightarrow v$ scenarios exist, e.g.: <u>Cygnus region</u>: L. Anchordoqui et al. PLB 593 (2004) 42 <u>SGR A East SN remnant</u>: Grasso and Maccione [astro-ph/0504323]

From astrophysical data e.g. on the Cygnus region (e.g. UV γ density) and hadronic physics data (e.g. secondary population yields in hadronic interactions)

 $V_{\text{nuclear dissociation}} \approx 27 \times V_{\text{pp hadronic interactions}}$

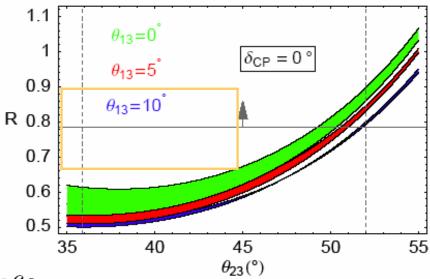
In this case, likely π contaminations to ν flux are at the O(10%) level $\rightarrow \Delta R \approx + 0.02$ only!

Within the expected statistical accuracy of IceCube & at the same subleading level of other effects neglected in our estimate

Is this scenario falsifiable?

Normalizing the anisotropy to the "n-chain" model, $n \rightarrow v$ -fluxes should easily observable in IceCube, with a detailed measurement in a decade.

If the π -chain dominates, the flux should be much higher, though with a flavour ratio of about 1:1:1

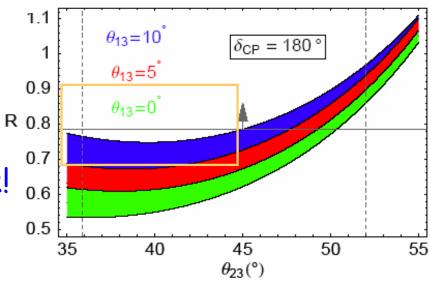

Also y-rays constraints!

High v flux and R=0.5 would disprove the dominance of $A \rightarrow n \rightarrow v!$

muon-damped sources

Sensitivity to the octant of θ_{23}

$$R \equiv \frac{\phi_{\mu}}{(\phi_e + \phi_{\tau})} = \frac{P_{\mu\mu}}{1 - P_{\mu\mu}}$$



$$P_{\mu\mu} \approx 1 - \frac{3}{8}c_{23}^4 - 2c_{23}^2s_{23}^2 - \frac{\sqrt{3}}{2}c_{23}^3s_{23}s_{13}c_{\delta}$$

R>0.78
$$\rightarrow \theta_{23}$$
 > $\pi/4$

Backgrounds can only decrease R!

Model-independent statement

Why pion beams?

Effective "pion beams" produced in sources where muons (but not pions) are damped sources \rightarrow pure $\nu_{\mu} + \bar{\nu}_{\mu}$ beam

Boosted Lifetime ∞ E

E.m. cooling time ∞ E⁻¹ (Inv. Compton), E⁰ (adiabatic expansion),...

Their ratio increases with E, at a certain ϵ_0 the particle is stopped before decaying. The lifetime implies $\epsilon_{0\mu} << \epsilon_{0\pi}$

For AGN, π beams @ $O(10^6)$ TeV \rightarrow unobservable at OCT For GRB, π beams possibily @ O(10) TeV \rightarrow optimal for OCT!!!

Flavour ratios can be used for astrophysical diagnostics

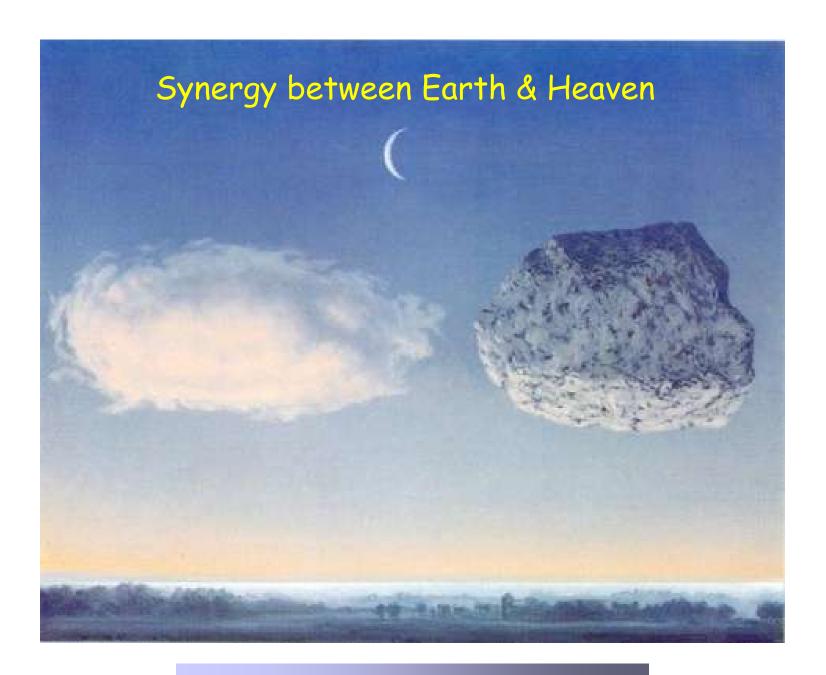
Kahsti & Waxman, PRL 95 (2005) 181101

Concluding remarks

Overview - I

Neutrino telescopes are optimized for astrophysical purposes, but they may have a potential for v-mixing physics, too.

 v_{τ} appearence expected to be seen within 3-4 years (IceCube completed + 1 year of running)


"Calorimentric" detection of a galactic core-collapse SN possible. Earth matter effect (and thus hierarchy/ θ_{13}) possibly identified at IceCube+"HK", or +Mediterranean km³

Overview - II

I showed that it is conceivable or even likely that Nature might provide " β -beams" (or pion beams) for free, that could be studied at v-telescopes already in construction.

Measurable flavor ratios are sensitive to $\theta_{13},\,\delta_{\text{CP}}$, and to the octant of θ_{23} . The latter is particularly suitable for a model-independent determination (if $\theta_{23}>\pi/4$)

Going beyond the paradigm of a "canonical" flavor equipartition would repropose at neutrino telescopes the fruitful synergy between neutrino physics and astrophysical diagnostics

THANK YOU!

Neutrino mixing parameters

```
Solar/Kamland
Best Fit: Sin<sup>2</sup> \theta_{sol} =0.29, \Delta m_{sol}^2 = 8.1 x 10<sup>-5</sup> eV<sup>2</sup>
3 \sigma range: 0.23 < \sin^2 \theta_{12} < 0.37, 7.3 \times 10<sup>-5</sup> < \Delta m_{sol}^2 / eV^2 < 9.1 <math>\times 10<sup>-5</sup>
Best Fit: \theta_{sol} = 32.6^{\circ}
3 \sigma \text{ range: } 28.7 \,^{\circ} < \theta_{\text{sol}} < 37.5 \,^{\circ}
Atmospheric/K2K
Best Fit Sin<sup>2</sup> \theta_{atm} = 0.5, \Delta m_{atm}^2 = 2.2 \times 10^{-3} \text{ eV}^2
3 \sigma \text{ range } 0.34 < \sin^2 \theta_{atm} < 0.66; 1.4 \times 10^{-3} < \Delta m_{atm}^2 / eV^2 < 3.3 \times 10^{-3}
Best Fit: \theta_{atm} = 45^{\circ}
3 \sigma \text{ range: } 35.7 \,^{\circ} < \theta_{sol} < 54.3 \,^{\circ}
Global (CHOOZ+others)
                                                                                              Maltoni et al.,
Best Fit: Sin^2 \theta_{13} = 0
                                                                                           NJP 6 (2004) 122
3 \sigma range: Sin<sup>2</sup> \theta_{13}<0.047,
```

 $\theta_{13} < 12.5^{\circ}$

$\sigma(vN)$ vs. E

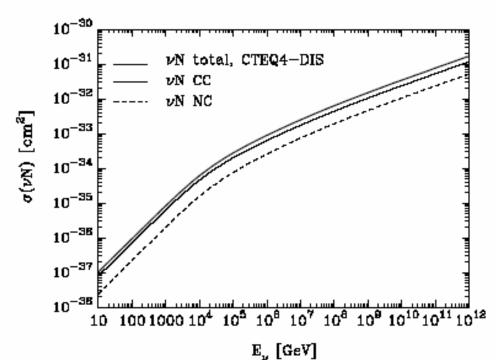


FIG. 1. Cross sections for $\nu_{\ell}N$ interactions at high energies, according to the CTEQ4–DIS parton distributions: dashed line, $\sigma(\nu_{\ell}N \to \nu_{\ell} + \text{anything})$; thin line, $\sigma(\nu_{\ell}N \to \ell^- + \text{anything})$; thick line, total (charged-current plus neutral-current) cross section.

R. Gandhi, C. Quigg, M. H. Reno and I. Sarcevic, Neutrino interactions at ultrahigh energies, Phys. Rev. D 58, 093009 (1998) [hep-ph/9807264].

$\sigma(\bar{v}N)$ vs. E

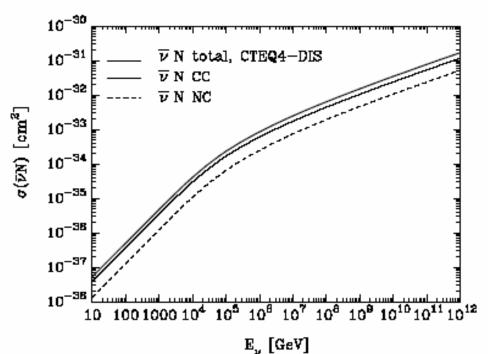


FIG. 3. Cross sections for $\bar{\nu}_{\ell}N$ interactions at high energies, according to the CTEQ4–DIS parton distributions: dashed line, $\sigma(\bar{\nu}_{\ell}N \to \bar{\nu}_{\ell} + \text{anything})$; thin line, $\sigma(\bar{\nu}_{\ell}N \to \ell^+ + \text{anything})$; thick line, total (charged-current plus neutral-current) cross section.

R. Gandhi, C. Quigg, M. H. Reno and I. Sarcevic, Neutrino interactions at ultrahigh energies, Phys. Rev. D 58, 093009 (1998) [hep-ph/9807264].

Clarification on δ_{CP}

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{j>k} Re(J_{\alpha\beta jk}) \sin^2 \frac{\Delta m_{jk}^2 L}{4E} + 2\sum_{j>k} Im(J_{\alpha\beta jk}) \sin \frac{\Delta m_{jk}^2 L}{2E}$$

$$J_{\alpha\beta jk} = U_{\beta j} U_{\beta k}^* U_{\alpha j}^* U_{\alpha k}$$

$$u \to \bar{\nu} \qquad J_{\alpha\beta jk} \to J_{\alpha\beta jk}^*$$

$$Im(J_{\alpha\beta jk}) = J \sum_{\gamma,l} \epsilon_{\alpha\beta\gamma} \epsilon_{jkl}$$

Jarlskog determinant $J = c_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \sin \delta$

$$\begin{array}{lll} P(\nu_{e} \rightarrow \nu_{\mu}) = P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) & = \\ & 4c_{13}^{2}[\sin^{2}\Delta_{23}s_{12}^{2}s_{13}^{2}s_{23}^{2} & + & c_{12}^{2}(\sin^{2}\Delta_{13}s_{13}^{2}s_{23}^{2} + \sin^{2}\Delta_{12}s_{12}^{2}(1 - (1 + s_{13}^{2})s_{23}^{2}))] \\ & \qquad \qquad \qquad \\ \text{CP-even} & - & \frac{1}{4}|\tilde{J}|\cos\delta[\cos2\Delta_{13} - \cos2\Delta_{23} - 2\cos2\theta_{12}\sin^{2}\Delta_{12}] \\ & \qquad \qquad \\ \text{CP-odd} & + & \frac{1}{4}|\tilde{J}|\sin\delta[\sin2\Delta_{12} - \sin2\Delta_{13} + \sin2\Delta_{23}], \end{array}$$

Apollonio et al. hep-ph/0210192