Recent Results on Insertion Design for the LHC Luminosity Upgrade Highlights

J.-P. Koutchouk, CERN for the HHH-CARE Collaboration

Highlights on Following Issues

- 1- A global approach to insertion design: beam physics, magnet technology, energy deposition
 - **a** \rightarrow Investigation on the potential of NbTi & Nb₃Sn triplets for performance improvement and for the full LHC upgrade (L/L₀ \approx 10)
- 2- Minimizing the geometrical luminosity loss factor
 - a→ "Flat" beams
 - $b \rightarrow D0$ early separation scheme
- 3- Other solutions for the insertion
 - **a**→ *Long NbTi* triplets at low gradient
 - **b**→ *Dipole-first insertions*

1- A Global Approach

The present LHC insertion has been pushed for maximum performance. Hence any upgrade must necessarily pass "qualitative barriers"...

- Focusing barrier (larger magnet gradient and aperture, closer to IP, correction of possibly larger optical aberrations)
- Beam-beam barrier (maximize useful head-on and minimize perturbing long-range interactions)
- **Energy deposition barrier** (instant energy deposition, heat removal, radiation lifetime and activation issues)

...simultaneously, with a <u>large interplay between the</u> <u>barriers'parameters</u>.

Investigation of <u>quadrupole first</u> solutions: Model (J.P. Koutchouk/CERN)

Global model of an insertion

- •Beam optics (linear optics, optics aberrations)
- •Beam dynamics (long-range beam-beam effect)

• Performance
$$L(N_b, k_b, \beta^*, F(\sigma_s, \beta^*, \theta_c(\beta^*, N_b k_b, l_{LR}, BBLR)))$$

•Magnet parameters (gradient, length, aperture, sc. margins)

$$\phi_{coil}(\phi_{beam}(\sigma_{beam}(\beta^*, dispersion(\theta_c)), \theta_c, l^*, l_{triplet}, tol, co), w_{CB}, w_{BS}, w_{shield})$$

•Peak power deposition

$$\left|\hat{P}ig(L, l_{ extit{triplet}}, G_{Q}, \phi_{ extit{beam}}, \sigma_{ extit{beam}}, heta_{c}, \phi_{ extit{coil}}ig)
ight|$$

Using <u>scaling laws</u> to explore the parameter space 10⁶ faster.

Investigation of <u>Quadrupole first</u> solutions: Results (J.P. Koutchouk/CERN)

- The Nb-Ti technology appears limited to the vicinity of the nominal performance. Larger aperture NbTi triplets would allow a luminosity improvement by 65% for a beam current halfed.
- The most promising solution appears to be:
 - Nb₃Sn technology with a triplet similar to nominal
 - •19 m from IP (23), 100 mm coil aperture (70)
 - •Peak heat deposition to be reduced by a few units at $L/L_0=10$
 - •Performance: $L/L0 = 6 \rightarrow 11$
- The global model will be further improved in collaboration, specially for the heat deposition scaling laws (US/LARP)

2- Minimizing the geometrical loss factor

Luminosity increase vs beta*:

- 1. no Xing angle,
- 2. nominal Xing and bunch length,
- 3. BBLR?,
- 4. Bunch length/2

Pushing the low-\beta makes sense if simultaneously the impact of the luminosity geometrical loss factor is acted upon.

Flat Beams (T. Sen/US-LARP,

S. Fartoukh/CERN)

Basic Idea: Create with focusing a non unit beam aspect ratio and separate the beams in the plane where the size is minimum:

• the "elliptical" aperture is better used

• the Xing angle constant in " σ " decreases in " μ rad" \rightarrow

Can be done in nominal LHC! ~35% potential luminosity increase to be confirmed (larger tune spread), likely with long-range b-b compensation.

Early separation scheme (J.P. Koutchouk/CERN)

DO Orbit corrector

Q1

Q2

Q2

G. Sterbini, student from U. La Sapienza ←

Principle: reduce or cancel the Xing angle at the IP and gain ~50% in luminosity or more.

Issues: where can the dipole be installed? which angle→ LR beam-beam studies, requirements on the dipole: transparency, magnetic confinement, heat deposition & rad. resistance...

Low-gradient long NbTi quadrupole solutions

(O. Bruning/CERN)

As a fall-back of dipole-first and combined-function studies, a "different" quad-first solution emerged, with challenges radically different from a Nb₃Sn solution:

- Weak gradients: $47 \rightarrow 70$ T/m
- Large coil aperture: 143mm → 212 mm
- peak field well within NbTi capabilities
- Large $\beta_{max}=18$ km
- Very long triplet ~100 m
- Local chromaticity correction probably required

Performance level to be evaluated

Dipole first Insertions

A full insertion layout was optically designed (O. Bruning/CERN). A new optical matching toolkit was developed (R. de Maria/CERN)

Challenges:

- Separation dipole D1: Conceptual studies (R. Gupta/US-LARP, P. McIntyre/US-LARP)
- Local chromaticity correction: P. Raimondi/INFN

The advantage of this solution is primarily a reduced requirement on the quadrupole aperture.

Conclusions

- •Several other fields moving ahead: Beam-beam compensation, large crossing angle with Crab cavities...
- •The CARE-HHH Arcidosso workshop gave a boost to LHC upgrade studies and a meeting opportunity to develop collaborations. The US/LARP Chicago meeting as well.
- •There is a variety of research lines to increase the LHC luminosity by ~10 with different challenges.
- •The advancement of the studies should allow soon a ranking of solutions and topics by potential and feasibility to focus the effort.