Results from WG1 in Snowmass

D. Schulte

Overview

- Second ILC workshop at Snowmass to prepare the BCD
 - First meeting of GDE
 - Baseline configuration document to be ready end of the year
 - GDE meeting Frascati to discuss BCD
 - Next year costing of the design
 - BCD should contain baseline and proposed R&D
- WG1 focused on beam dynamics
 - Conveners K. Kubo, P. Tenenbaum, D.S.

Organisation

- First week ordinary workshop with presentations
- Second week concentrated on discussions and recommendations
 - A list of decisions which need recommendations from T. Himmel
 - Preparation of workplan
 - Actual simulations

WG Goals at Snowmass

- Agreement on beam parameters with GG1
- Bunch compressor design
- Main linac configuration
- Agreement on model assumptions
- Agreement on necessary data standards
- Agreement on plan for coming 16 months
 - Definition of tolerances and specifications
 - Beam dynamics simulations / benchmarking

Agreement on Beam Parameters with GG1

- Two main problems
 - Can a bunch compressor produce the short bunch length of 150um?
 - Yes
 - Can the luminosity target be met?
 - This is what we will try to answer in the coming year

Generic Machine Layout

- We agreed on a generic beam line layout
 - Most lattices do not exist
 - But we greed on what the lattice should provide
- Sub-systems are
 - DR to bunch compressor transport
 - Bunch compressors
 - Main linac
 - Beam delivery system (with WG4)
 - Spent beam line

DR to BC Transport

- Matching region
- Emittance measurement station
 - Necessary to separate the systems
- Transverse collimation section
 - We are worried about halo from the damping ring
- Feed-forward measurement
 - Feed-forward and turn-around were felt necessary to ensure beam stability, each bunch is kicked individually
- Turn-around
- Spin rotator
- Feed-forward correction
- Emittance diagnostics and skew correction section

Bunch Compressor

- It was felt that a two stage bunch compressor is required
 - One stage performance for 6mm to 300um is marginal
 - 150um demands two-stage
 - Sufficient margin should be provided
- Three designs were presented
 - A longer system by Peter Tenenbaum
 - A shorter system by Eun-San Kim
 - The longer was picked for BCD, since it is better investigated, will be revisited

Bunch Compressor Components

- First RF section
- First chicane
- Collimators for longitudinal plane
- Longitudinal diagnostics
 - Phase, length, correlations
- Second RF section
- Second chicane

Launch Region before Linac

- Collimators for longitudinal plane
- Longitudinal diagnostics
- Transverse diagnostics
- Transverse collimation/linac protection

Main Linac

- Constant quadrupole spacing of about 24 cavities (GDE executive committee: 32)
 - 8 cavities per module from WG2
 - Increase of spacing at higher energies should help but no agreement yet
 - One emittance measurement station
- Different phase advance in both planes seems useful
 - Rotating wakefields can cause problems (R. Jones)
 - 60 degrees in x, 75 in y degrees

Beam Delivery System and Post Collision Line

- Is designed by WG4
- Is an important ingredients in the integrated simulations
 - For luminosity estimates
 - E.g. banana effect
 - For understanding of diagnostics requirements
 - E.g. luminosity tuning

Tunnel Configuration

- Three options
 - Laser straight
 - Following the earth curvature
 - Piece-wise straight
- First can be more expensive
 - But safest from beam dynamics point of view
- Simulations showed
 - The bends in piece-wise straight tunnel seem OK (P. Tenenbaum)
 - Following the earth curvature could be OK (N. Walker)
 - More detailed simulations confirm this (sofar) (A. Latina, K. Kubo, D.S.)

Models for Imperfection

- A simple scattering model exists for prealignment
 - Based on ILC-TRC models
- A model (LICAS, A. Reichold, G. Grzelak) for the survey line is interfaced to one code (PLACET)
- Ground motion models exist (A. Seryi)
- Vibration model not satisfactory
- RF stability looks easier than for X-FEL
- A central documentation would be useful

Bunch Compressor Alignment

- Some sensitivity studies have been done by Peter Tenenbaum
 - Full alignment and tuning study to be done
 - Dynamic effects need study
 - Bunch compressor is essential for integrated simulations, since it couples longitudinal and transverse planes

Main Linac Alignment

- Several simulations of dispersion free steering in main linac (J. Smith, K. Kubo, K. Ranjan, N. Solyak, D.S.)
 - Differences in the simulations made comparison difficult
 - Basic concept is variation of gradient
 - Results seem comparable
 - Main Linac emittance growth too large
 - Particularly difficult is first section where energy difference is small

Tuning Bump Performance

- Tuning bumps can reduce emittance growth to acceptable level
 - See Peder Eliasson's talk
- Need dispersion tuning at the beginning and end of main linac
 - Measurement is done at the end
- Wakefield bumps are also helpful
- Felt need of one station in linac
 - In first part uncorrelated energy spread dominates
 - In second wakefields and correlated energy spread

Beam-Based Alignment of BDS

- Very important area but not well covered
- G. White showed first results of BPM to quadrupole alignment
- Tuning studies shown in BDS working group
- ATF2 will be perfect test bed

Feedback Simulations

- Intra-pulse beam-beam feedback with realistic machine
 - This is a crucial ingredients of the ILC performance
 - Glen White showed encouraging results
 - More detailed understanding needed
- Pulse-to-pulse feedback is not sufficient
 - Linda Hendrickson, Andrea Latina
 - Linda made a very detailed study
 - Energy jitter can confuse feedback in dispersion points in BDS

Interaction Point Tuning

- Some useful signal exist
 - Incoherent pairs, Beamstrahlung, Radiative Bhabhas (but need to be careful)
 - Bhabhas at small angles are too slow
- Tuning on the pairs (O. Napoly, D.S.) tested
 - Glen White used this signal for offset/angle optimisation
- Tuning on proper combinations of beamstrahlung can work
 - Peder Eliasson, D.S.
- Reconstruction of all beam parameters from beam signals seems very tough (G. White)

Integrated Simulations

- Integrating all relevant sub-system into a simulation is required
 - Banana effect
 - Bunch compressor
- Integration different timescales is important
 - E.g. ground motion during beam-based tuning
 - Cross talk of feedback systems

Code Development

- Need to develop integrated simulation packages
 - Components exist but integration and extension is required
 - BC (BMAD, LIAR, Lucretia, SAD, MERLIN)
 - ML (BMAD, LIAR, Lucretia, SLEPT, PLACET, MERLIN)
 - BDS (BMAD, LIAR, Lucretia, SAD, PLACET, MERLIN)
 - IP (CAIN, GUINEAPIG)

Benchmarking is vital

- Want to have at least two codes for each area
- Benchmarking with experiment (e.g. ATF2)
- Agreed on lattice format
 - XSIF for now, XML later
- Can we define better interface?

Conclusion

- Quite a useful workshop
- Had some time for discussion