# Recent Activities on Pulsed Magnets

presented by L. Bottura

CARE-05 General Meeting CERN, November 23<sup>rd</sup>-25<sup>th</sup>, 2005





## **Overview**

- Ongoing R&D for FAIR at GSI
  - Design optimization, prototyping and test work on SIS-100 model (2 T, 4 T/s, 2 s, 200 x 10<sup>6</sup> cycles)
  - Test and analysis of a model for SIS-200 (4 T, 1 T/s, 24 s, 1 x 10<sup>6</sup> cycles)
  - Design work on SIS-300 (6 T, 1 T/s, 24 s, 1 x 10<sup>6</sup> cycles)
- Pulsed Magnet Working Group see http://pmwg.web.cern.ch/pmwg/
  - informal working group with 25 participants, 5 institutions collaborating in CARE-HHH-AMT
  - Foster exchange of information and steer R&D on superconducting pulsed magnets for accelerators (LHC & FAIR)
  - 2 meetings on design issues (strand, cable, magnet)
- ECOMAG-05
  - Workshop on pulsed superconducting magnets for accelerators
  - October 26th-28th, 2005 in Frascati (I)

## **ECOMAG-05**

### • Aims



- Define a set of magnet design parameters for the development of pulsed superconducting magnets for accelerators (this is one of the main objectives of HHH-AMT)
- Review the state-of-the-art of design and manufacturing capability
- Specify performance requirements and define R&D needs
- Workshop jointly hosted and sponsored by ENEA and INFN Frascati
- Organizing committee:
  - L. Bottura (CERN), A. Della Corte (ENEA), P. Fabbricatore (INFN), U. Gambardella (INFN), G. Moritz (GSI), W. Scandale (CERN), D. Tommasini (CERN)





# A Workshop !

- Three working groups
  - Wires and Cables (WG-1) J. Kaugerts (GSI)
  - Low losses pulsed magnets (WG-2), E. Salpietro (EFDA-CSU)
  - Heat transfer, quench protection and magnetic measurements (WG-3), A. Siemko (CERN)
- Invited talks from specialists in the field
  - D. Leroy (CERN) Low-Loss Wires
  - P. Bruzzone (EPFL-CRPP) Low-Loss Cables
  - J. Minervini (MIT-PFC) Pulsed and AC Magnets
  - B. Baudouy (CEA-Saclay) Cryogenic Heat Transfer
- Contributions from industry
- Summary and round table session



## Superconducting Pulsed Accelerator Magnets

## 2 T, 4T/s SIS-100 prototype



Heat load to helium, 1.4 m dipole 2 T, 4 T/s, 1 Hz  $Q_{total} = 38 W$   $Q_{iron} = 29 W$  $Q_{coil} = 9 W$ 

Heat load optimization Long-term mechanical stability



Characterization Industrial production issues

## Magnet Design Parameters for FAIR SIS-100 and SIS-300

CAR

|                                   | SIS-100                      | SIS-300             |
|-----------------------------------|------------------------------|---------------------|
| Peak field [T]                    | 2                            | 6                   |
| Good field region [mm]            | HxV = 130x60                 | $\Phi = 80$         |
| Magnet length [m]                 | 2.9                          | 2.9                 |
| Number of dipoles                 | 108                          | 108                 |
| Field quality [10 <sup>-4</sup> ] | ± 6                          | ± 2                 |
| dB/dT [T/s]                       | 4                            | 1                   |
| Duration of a cycle [seconds]     | 2                            | 24                  |
| Number of cycles (20 years) [-]   | <b>200 x 10</b> <sup>6</sup> | 1 x 10 <sup>6</sup> |
| Radiation load [W/m]              | 1                            | 1                   |
| Average refrigeration power [W/m] | 10                           | 10                  |

# Magnet Design Parameters for the Upgrade of LHC Injectors

PAR

|                                   | PS+                  | SPS+                |
|-----------------------------------|----------------------|---------------------|
| Peak field [T]                    | 3                    | 4.5                 |
| Good field region [mm]            | HxV = 130x80         | $\Phi = 80$         |
| Magnet length [m]                 | 4                    | 6                   |
| Number of dipoles                 | 100                  | 750                 |
| Field quality [10 <sup>-4</sup> ] | ± 4                  | ± 2                 |
| dB/dT [T/s]                       | 3.5                  | 1.5                 |
| Duration of a cycle [seconds]     | 3.6                  | 12                  |
| Number of cycles (20 years) [-]   | 60 x 10 <sup>6</sup> | 1 x 10 <sup>6</sup> |
| Radiation load [W/m]              | 10                   | 10                  |
| Average refrigeration power [W/m] | 20                   | 10                  |



# Comments on the Magnet Design Options

- All magnet families have difficulties and challenges
  - Balance of conductor margins, losses, heat removal
  - Field quality in ramped conditions
  - Large dynamic range (a factor 30 in energy for the PS<sup>+</sup>)
  - Magnet protection during quench
  - Pulsed SC joints
  - Fatigue (several 1...100 MCycles)
  - Radiation (1...10 MGy)
  - Measurement and test issues
- All factors can be addressed and seem to be in reach of present technology, possibly with optimized industrial process (strand, cable)

## Can we build and measure these magnets ? YES

## **Networking Results - 1**

- More than 70 participants (initial plan on 30 to 50)
- 17 laboratories and universities
  - Bochvar Institute, CEA, CERN, CIEMAT<sup>(\*)</sup>, EFDA-CSU<sup>(\*)</sup>, ENEA<sup>(\*)</sup>, EPFL-CRPP<sup>(\*)</sup>, FzK<sup>(\*)</sup>, GSI, IHEP, INFN-Frascati, INFN-Genova, INFN-Milano, JINR, KEK, MIT<sup>(\*)</sup>, Ohio State <sup>(\*)</sup> fusion/energy laboratories
- 7 major European industries:



## **Networking Results - 2**

- Cross-breeding among laboratories (HEP and Fusion research in particular) on the topic of pulsed superconducting magnets
- Industry involved from the start of the brainstorming, bringing focused and relevant experience in this technology
- Very positive response !

We have identified a general interest in the community of *clients* and *producers* 

## **Follow-up**

- The material discussed is collected and will be posted on the www site of the Workshop
- The design coordinators will maintain momentum on the issues identified
- Reconvene in 6 months to verify progress



Special session at **WAMDO** April 3-7 2006 CERN (Archamps)







#### NbTi strand R&D targets $D = 0.5 \dots 0.8 \text{ mm}$ 30 Cu+Matrix:NbTi = 1.5- state-of-the-art Jc > 2500 ... 3300 A/mm<sup>2</sup> low-loss I 25 $D_{eff} = 3.5 \dots 5 \mu m$ low-loss II extrusion contro strand Q<sub>h</sub> (mJ/cm<sup>3</sup>) **CuNi barriers** CuMn matrix 20 D = 0.8 mm15 Jc > 2700 A/mm<sup>2</sup> $D_{eff} = 2.5 \,\mu m$ 10 D = 0.5 ... 0.8 mm 5 Jc > 2000 A/mm<sup>2</sup> $D_{eff} = 1 \ \mu m$ 0 0 1000 2000 3000 4000 5000

Jc (A/mm<sup>2</sup>)

**Strand R&D Targets** 

## Small Filament R&D - 1

- About 50 % of the loss is generated by hysteresis in the filaments
- Simply reducing the filament size does not work





## 12000 monocores (1.5 mm wide)!



filament distortion near the copper !

## Small Filament R&D - 2





Hex single stack

**Better geometry control** 





## 

Small Filament R&D - 3

**CuNi to reduce coupling** 

CuMn matrix

KUMPU



**CuMn to reduce proximity**