The CLIC accelerating structure development program

Walter Wuensch CARE05 23 November 2005

The CLIC design gradient of 150 MV/m was first achieved in a CLIC built structure tested at SLAC in 1994. Pulse length 150 ns.

11.424 GHz $0.114 \text{ a/}\lambda$ 0.011 vg/cCopper
Diamond turned
Vacuum brazed
Peak E_{acc} 153 MV/m 150 ns 69 MWPeak E_s 326 MV/m 46 hr conditioning

So why does CLIC still have a high-gradient development program?

The a/λ=0.114 of this structure is low compared to accelerating structures in linear collider parameter lists so if you used it you would expect to get higher wakes, higher emittance growth and consequently an inefficient machine

but raising the a/λ immediately lowers achievable gradient (NLC structures) on the other hand shortening the pulse length increases achievable gradient (CTF2 structures) but this again is inefficient

The other big high-gradient effect we face is pulsed surface heating: Here again we face a compromise between gradient and efficiency especially through damping features.

Our development program seeks to establish solutions for high gradient combined with high efficiency

Our main lines of attack

New materials for higher gradient for fixed geometry and pulse parameters – for both rf breakdown and pulsed surface heating. We need to generate our own rf breakdown and fatigue data. Many many technological issues.

rf design for low surface field, E and H, structures – fully three dimensional geometries. Demanding computation and fully 3-d micron-precision machining.

rf design for short pulses – Very strong damping. Demanding time domain computation and fully 3-d micron-precision machining.

Fully integrated optimization procedure – optimization of structures and linac made together because the interplay of rf efficiency and emittance growth is not trivial.

rf design for low surface field structures and short pulses

Hybrid Damped Structure (HDS)

Combination of slotted iris and radial waveguide (hybrid) damping

results in low Q-factor of the first dipole mode: ~ 10

HDS cell design

Surface magnetic field

Surface electric field

HDS 60-cells Cu prototype

High speed 3D-milling with 10 µm precision

30 GHz testing results: Cu, Mo and W iris

16 ns pulse length in CTF2

Breaking news! Longer pulses are being achieved in a new Mo iris test! Progress report next week in the CTF3 collaboration meeting!

30 GHz accelerating structure testing area in CTF

30 GHz testing program in CTF3

Circular structures:

Mo iris – under test

Cu $2\pi/3$

Cu $\pi/2$

W iris

HDS60, 60°, Cu

HDS11, 60°:

Cu,

Mo,

stainless steel,

Ti,

Al

CLIC X-band testing at NLCTA

dc spark: materials, preparation techniques, breakdown physics

dc spark example: effect of vacuum level on breakdown level

Fatigue strength of materials

Pulsed Laser Fatigue Tests

- Surface of test sample is heated with pulsed laser. Between the pulses the heat will be conducted into the bulk.
- The Laser fatigue phenomenon is close to RF fatigue.
- The operating frequency of the pulsed laser is 20 Hz -> low cycle tests.
- Observation of surface damage with electron microscope and by measuring the change in surface roughness.
- Tests for CuZr & GlidCop in different states under way.

Laser test setup

Diamond turned test sample, Ra 0.025 µm

Red curve - CLIC RF pulse Blue curve - Laser pulse

Pulsed Laser Fatigue Tests

Cu-OFE at 10^6 cycles, $\Delta T=90^{\circ}C$ Fatigued surface

CuZr at 10 $^{\circ}$ cycles, $\Delta T=90$ $^{\circ}C$ No fatigue.

Ultrasound Fatigue Tests

- Cyclic mechanical stressing of material at frequency of 24 kHz.
- High cycle fatigue data within a reasonable testing time. 1010 cycles in 5 days.
- Will be used to extend the laser fatigue data up to high cycle region.

Tests for Cu-OFE, CuZr & GlidCop under

way.

Calibration card measures the displacement amplitude of the specimen's tip

Fatigue test specimen

Ultrasound Fatigue Tests

Diamond turned specimen before cyclic loading

The same specimen after 3*10⁶ cycles, crack initiated at the region of the maximum stress

Applied Stress is calculated in Ansys

Putting it all together: investigation of HIP, Hot Isostatic Pressing of Mo with CuZr

Optimization

Accelerating structure parameters:

```
fixed: \langle E_{acc} \rangle = 150 \text{MV/m}, f= 30GHz, varied: \delta \varphi = 50^{\circ} - 130^{\circ}, a/\lambda = 0.1 - 0.25, d/\lambda = 0.025 - 0.1, N_b, N_{cells}, N_{cycles}
```

Optimization criterion

Luminosity per linac input power:

$$\int L dt / \int P dt \sim L_{b \times} \eta / N$$

Beam dynamics input:

$$W_{t,2}$$
 = 20V/pC/mm/m for N=4x10⁹ N, L_{bx} dependencies of a/ λ

rf breakdown and pulsed surface heating (rf) constrains:

$$E_{surf} < 378 \text{ MV/m}, \quad \Delta T < 56 \text{ K}, \quad P_{in} t_p^{1/2} < 1225 \text{ MWns}^{1/2}$$

Several million structures considered in the optimization

Parameters versus maximum P_{in}

Parameters of HDS140-Mo

Dipole mode wakes in hds140

acknowledgements

Claude Achard Samuli Heikkinen

Chris Adolphsen Erk Jensen

Husnu Aksakal Thibault Lefevre

Daniel Allard Marina Maliabaila

Gonzalo Arnau-Izquerdo Serge Mathot

Hans Braun Oznur Mete

Sergio Calatroni Holger Neupert

Georges Carron Jukka Parro

Ahmed Cherif Trond Ramsvik

Roberto Corsini Alberto Rodriguez

Stephane Deghaye Daniel Schulte

Jean-Pierre Delahaye Jonathan Sladen

Steffen Doebert Igor Syrachev

Alexej Dubrovski Mauro Taborelli

Raquel Fandos Frank Tecker

Gunther Geschonke Peter Urschutz

Alexej Grudiev lan Wilson

Jan Hansen Guy Yvon