

Beam-Beam interaction SIMulation: GUINEA-PIG

CARE 05, Geneva, November 2005

C. Rimbault, LAL Orsay

Beam-Beam interaction SIMulation : GUINEA-PIG

1. Introduction: BBSIM tasks overview

2. Incoherent e⁺e⁻ pair background study

- **BBSIMs predictions: GUINEA-PIG Vs CAIN**
- Impact of beam parameter sets on microVertex Detector background

3. In progress: Bhabhas in GUINEA-PIG

Beam-Beam SIMulation

• When beams collide:

- Energy loss in the form of synchrotron radiation: beamstrahlung
- Secondary backgrounds
 - Electromagnetic : $e^+ + e^- \rightarrow \gamma \gamma \rightarrow e^+ e^- \dots$
 - Hadronic : $e^+ + e^- \rightarrow \gamma \gamma \rightarrow$ hadrons
- Electromagnetic deflections
 - effect on backgrounds (pairs ...)
 - effect on luminosity measurements ? (Bhabha scattering)
- e⁺ e⁻ spin depolarisation effects

GUINEA-PIG check-up & benchmarking

- Comparison with simulation codes
 - General Beam-Beam interactions: CAIN
 - Dedicated codes: BDK, BHLUMI ...
- Improvement, adding new options/ phenomena
- Management (Web doc, version updating...)

Incoherent Pair Creation Processes

1. Breit-Wheeler : $\gamma\gamma \rightarrow e^+e^-$ 2. Bethe-Heitler : $\gamma e^{\pm} \rightarrow e^{\pm} e^+e^-$ 3. Landau-Lifshitz : $e^+e^- \rightarrow e^+e^-e^+e^-$ x-section exact calculation

Weizäcker-Williams approximation

Equivalent photon spectrum, associated to a virtuality parameter, Q

Simulation inputs

GuineaPig & *Cain* : Tracking¹, Beam Size Effect², $Q^2_{max} = s/4$, m_e^2 BDK: $e^+e^- \rightarrow e^+e^-e^+e^-$, $s_{min} = 4m_e^2$ used as a reference for the LL process $E_{min} = 5$ MeV ; Beam parameter set: USSC 500 GeV ; VD: $r_1 = 15$ mm, B=4T (LDC)

¹*Tracking* : Deflection of low energy pairs due to the field of the opposite beam. ²*Beam Size Effect*: Reduction of cross section due to the position uncertainty for the virtual photons with low Pt.

Deflection of the pairs Pt vs \theta

GuineaPig

Pt > 5 MeV/c mostly due to electromagnetic deflections

GuineaPig / CAIN

Qualitative agreement between Guinea-Pig and CAIN

Landau-Lifshitz : Comparison with BDK

Very good agreement for Guinea-Pig and BDK

 $e^+ + e^-$ production (effective) cross sections E > 5 MeV

σ (mb)	Guinea-Pig Q ² _{max} =s/4	CAIN Q ² _{max} =m _e ²	BDK	(GP-CAIN)/GP
All IPC particles	101	89.5	-	0.12
Breit- Wheeler	1.01	1.11	-	0.01
Bethe- Heitler	66.3	61.7	-	0.07
Landau- Lifshitz	33.9	26.7	31.8	0.21

without Beam Size Effect

 $e^+ + e^-$ production (effective) cross sections E > 5 MeV

σ (mb)	Guinea-Pig Q ² _{max} =s/4	CAIN Q ² _{max} =m _e ²	BDK	(GP-CAIN)/GP
All IPC particles	101 58.0	89.5 50.7	-	0.12
Breit- Wheeler	1.01 <i>1.05</i>	1.11 <i>1.04</i>	-	0.01
Bethe- Heitler	66.3 37.7	61.7 <i>34.5</i>	-	0.07
Landau- Lifshitz	33.9 19.2	26.7 15.2	31.8	0.21

without & with Beam Size Effect

IPC particles reaching the VD (LDC) **Pt** vs θ

 $Pt > 5 MeV \& \theta > 20 mrad$

VD bkg does not come from magnetic deflection

Events reaching the VD effective $\sigma(\mu b)$

σ (μb)	GuineaPig Q ² _{max} =s/4	$\begin{array}{c} \text{CAIN} \\ \text{Q}^2_{\text{max}} = \text{m}_{e}^2 \end{array}$	BDK	(GP-CAIN)/GP
All	60.5 ± 6.0	36.5 ± 4.5	-	~ 0.41 ± 0.12
BW	10.3 ± 2.4	$\textbf{7.0} \pm \textbf{2.0}$	-	$\sim 0.27 \pm 0.33$
BH	20.5 ± 3.3	16.6 ± 3.0	-	$\sim 0.20 \pm 0.20$
LL	29.7 ± 4.0	13.4 ± 2.7	37.5 ± 5.3	$\sim 0.60 \pm 0.18$

without Beam Size Effect

Events reaching the VD effective $\sigma(\mu b)$

σ (μb)	GuineaPig	CAIN	BDK	(GP-CAIN)/GP	
	$Q^2_{max} = s/4$	$Q_{max}^2 = m_e^2$			
All	60.5 ± 6.0	36.5 ± 4.5	-	~ 0.41 ± 0.12	
	64.1 ± 5.9	37.4 ± 4.5	-		
BW	10.3 ± 2.4	$\textbf{7.0} \pm \textbf{2.0}$	-	$\sim 0.27 \pm 0.33$	
	8.2 ± 2.1	6.4 ± 1.9	-		
BH	20.5 ± 3.3	16.6 ± 3.0	-	$\sim 0.20 \pm 0.20$	
	26.6 ± 3.8	20.9 ± 3.3	-		
LL	29.7 ± 4.0	13.4 ± 2.7	37.5 ± 5.3	0 60 1 0 10	
	29.3 ± 4.0	10.2 ± 2.3	-	$\sim 0.00 \pm 0.18$	

without & *with* Beam Size Effect

Where does the difference between GUINEA-PIG and CAIN comes from ?

Origin of the difference GuineaPig / CAIN : Q^{2}_{max}

$Q^2_{max} = m_e^2$	IPC particles σ(mb)		IPC particles in VD $\sigma(\mu b)$		
	GuineaPig	CAIN	GuineaPig	CAIN	
All	51.8	50.7	32.0 ± 4.3	37.4 ± 4.5	
BW	1.09	1.04	5.7 ± 1.8	6.4 ± 1.9	
BH	35.2	34.5	16.5 ± 3.1	20.9 ± 3.3	
LL	15.6	15.2	9.7 ± 2.4	10.2 ± 2.3	

Same virtuality limit, same results : agreement between GP & CAIN at low virtuality

Is it correct to choose s/4 as the virtuality upper limit ?

The photon virtuality spectrum in BDK

Nice agreement between GuineaPig & BDK both at low and large virtuality

 $\mathbf{Q}_{\gamma 1} \mathbf{Vs} \mathbf{Q}_{\gamma 2} - \mathbf{BDK}$ 24% 67% -10 -5 log(Q2) (GeV)

BKD prediction at low virtuality: $\sigma_{prod} = 24 \text{ mb}$; $\sigma_{VD} = 12 \text{ µb}$ ~ CAIN results

Impact of beam parameter sets on VD background for $r_1 = 15 \text{ mm}$

Pairs deflection limit for Nominal option: for the Low Power option this limit is higher ! → too close to the background inflation region

 A careful choice is required for Low Power option: Incompatibility with Vertex Detector designs at low B and small radius
2T: not safe with r_i = 15 mm

Bhabha scattering & electromagnetic deflections

• Bhabhas are used to measure the luminosity: $\mathcal{L}_{int} = N_{Bhabha} / \sigma_{Bhabha}$

• Bhabha cross section :
$$\frac{d\sigma}{d\vartheta} = \frac{2\pi\alpha^2}{s} \frac{\sin\vartheta}{\sin^4\vartheta/2} \approx \frac{32\pi\alpha^2}{s} \frac{1}{\vartheta^3}$$

- Beam-Beam effect → EM deflections
 - → Modification of the angular distribution ?
 - → Modification of the theoretical cross section ?
 - → Would it be possible to estimate \mathcal{L} with $\Delta \mathcal{L}/\mathcal{L} < 10^{-4}$?

Bhabha scattering & electromagnetic deflections: Very Prelimary results

- 10⁶ Bhabhas produced with BHLUMI, $\sqrt{s}=500$ GeV, $25 \le \theta \le 90$ mrad :
- GUINEA-PIG EM deflection treatment (same as for the e+e- pairs)
- for the analysis : $30 \le \theta \le 75$ mrad, no cut on energy

Effect of the deflection on angles

Bhabha scattering & electromagnetic deflections: *Very preliminary results*

- 10⁶ Bhabhas produced with BHLUMI, $\sqrt{s}=500$ GeV, $25 \le \theta \le 90$ mrad :
- GUINEA-PIG EM deflection treatment (same as for the e+e- pairs)
- for the analysis : $30 \le \theta \le 75$ mrad, no cut on energy

Effect of the deflection on angles

Bhabha scattering & electromagnetic deflections: *Very preliminary results*

Difference between theoretical and "real" nb of Bhabhas : -0.46%

Summary

• Incoherent e⁺e⁻ pairs

GUINEA-PIG modelisation is more convenient than CAIN: m_e is a too small limit for the photon virtuality. Be careful with pair accumulation region after deflection : LowPower → constraints on VD design (B, radius, readout) 2T detector concept needs a VD inner radius >20 mm reference: EUROTeV-Report-2005-016-1

• First study of EM Deflection effect on Bhabha scattering:

 $Effect > 10 \times 10^{-4}$

Necessity to know well the impact of EM deflection
Tool will be provided (BHLUMI + GUINEA-PIG)