ECOMAG-05

presented by L. Bottura

CARE-05 General Meeting CERN, November 23rd-25th, 2005

Overview

- Organization and Aims of the Workshop
- Scope and Magnet Design Parameters
 - Manufacturing issues
 - Pulsed field issues
- R&D Identified
- Networking Results

Venue and Organization

 Workshop jointly hosted and sponsored by ENEA and INFN Frascati

Istituto Nazionale di Fisica Nucleare

- Organizing committee:
 - L. Bottura (CERN), P. Fabbricatore (INFN), G. Moritz (GSI), W. Scandale (CERN), D. Tommasini (CERN)
- Local organizers:
 - A. Della Corte (ENEA), U. Gambardella (INFN)

Aims

- Define a set of magnet design parameters for the development of pulsed superconducting magnets for accelerators (main objective of HHH-AMT-2)
- Establish the state-of-the-art in present design and manufacturing capability
- Specify the performance requirements of strand, cable, magnet and auxiliaries (i.e. cryogenics, power supplies, instrumentation, protection, measurement systems)
- Define the R&D need to achieve the above specifications

A Workshop !

- Three working groups
 - Wires and Cables (WG-1) J. Kaugerts (GSI)
 - Low losses pulsed magnets (WG-2), E. Salpietro (EFDA-CSU)
 - Heat transfer, quench protection and magnetic measurements (WG-3), A. Siemko (CERN)
- Invited talks from specialists in the field
 - D. Leroy (CERN)
 - P. Bruzzone (EPFL-CRPP)
 - J. Minervini (MIT-PFC)
 - B. Baudouy (CEA-Saclay)
- Contributions from industry
- Summary and round table session

Scope

The discussion focused on two large accelerator complexes requiring rapidly pulsed, high duty-cycle synchrotrons:

- the main rings of the International Facility for Antiproton and Ion Research (FAIR) at GSI-Darmstadt (Germany):
 - SIS-100 (2 T, 2 s, 200 x 10⁶ cycles)
 - SIS-300 (6 T, > 10 s, 1 x 10⁶ cycles)
- the LHC injector chain at CERN, aiming at an increase of luminosity and to prepare for an energy upgrade
 - Proton-Synchrotron (PS+) (3 T, 3.6 s, 60 x 10⁶ cycles)
 - Super-Proton-Synchrotron (SPS+) (4.5 T, 15 s, 1 x 10⁶ cycles)

The FAIR Complex

• SIS-100

- Heavy ions/protons acceleration
- Fast extraction to SIS-300
- Fast extraction to RIB/Antiproton targets
- SIS-300
 - Stretcher ring
 - Accelerates heavy ions
 - Slow extraction

Courtesy of H. Gutbrod, GSI

Magnet Design Parameters for FAIR SIS-100 and SIS-300

CAR

	SIS-100	SIS-300
Peak field [T]	2	6
Good field region [mm]	HxV = 130x60	Φ = 80
Magnet length [m]	2.9	2.9
Number of dipoles	108	108
Field quality [10 ⁻⁴]	± 6	± 2
dB/dT [T/s]	3.5	1
Duration of a cycle [seconds]	2	24
Number of cycles (20 years) [-]	200 x 10 ⁶	1 x 10 ⁶
Radiation load [W/m]	1	1
Average refrigeration power [W/m]	20	10

Courtesy of W. Scandale Proceedings of APD-LUMI-05

Magnet Design Parameters for the Upgrade of LHC Injectors

PAR

	PS⁺	SPS+
Peak field [T]	3	4.5
Good field region [mm]	HxV = 130x80	Φ = 80
Magnet length [m]	4	6
Number of dipoles	100	750
Field quality [10 ⁻⁴]	± 4	± 2
dB/dT [T/s]	3.5	1.5
Duration of a cycle [seconds]	3.6	12
Number of cycles (20 years) [-]	60 x 10 ⁶	1 x 10 ⁶
Radiation load [W/m]	10	10
Average refrigeration power [W/m]	20	10

Magnet Design Options: Up to 2 T

Resistive option

SPS dipole

Nuclotron (SIS-100) dipole Courtesy of G. Moritz, GSI

Magnet Design Options: Up to 4 T

UNK (SIS-300) 6T dipole

Courtesy of G. Moritz, GSI

Comments on the Magnet Design Options

- All magnet families have difficulties and challenges
 - Balance of conductor margins, losses, heat removal
 - Field quality in ramped conditions
 - Large dynamic range (a factor 30 in energy for the PS⁺)
 - Magnet protection during quench
 - Pulsed SC joints
 - Fatigue (several 1...100 MCycles)
 - Radiation (1...10 MGy)
 - Measurement and test issues
- All factors can be addressed and seem to be in reach of present technology, possibly with optimized industrial process (strand, cable)

Can we build and measure these magnets ? YES

Design and Optimization Issues for CERN injectors - 1

- Combined functions or FODO
 - Examine the lattice options
 - Summarize available lengths
 - Optimize the use of space
- Magnetic length vs. magnet sagitta vs. longitudinal filling factor
 - See the *discussion* on the effect of an increase of magnetic length in the dipoles for SIS-300

Courtesy of A. Yamamoto, KEK

We need to be clear on the requirements on optics/field/magnet design

Design and Optimization Issues for CERN injectors - 2

- Large dynamic range
 - 30 for PS⁺, 10 for SPS⁺,
- Low injection field in the coil
 - PS⁺≈ 0.1 T, SPS⁺≈ 0.4 T
- SC filament magnetization may have a very strong effect on field quality (at the 10⁻³...10⁻² level)
- An iron-dominated magnet reduces the influence of SC magnetization, but has a large saturation and require complex design of lamination, shims (and compensation coils, if needed)

We need to examine concepts and *home-in* on the best design for the required performance

Courtesy of D. Tommasini

Magnet specifications, design options and performance limits are closely inter-related

Design and Optimization Issues - 4

 The effect of eddy currents on the field (lag/advance) and field quality becomes an issue at a ramp-rate of 1...4 T/s

Strand internal structure, resistive matrix and twist pitch

Cables and inter-strand resistance control

Iron (ends !) and iron packs

Effect of conducting components

The basic understanding is there, but... can we predict/optimize as well as we think ?

On the Strand

- Present strand technology is sufficient for the demands of FAIR
- The requirements for an efficient upgrade of the CERN injector chain may demand further reduction of AC loss (factor 3...5)
- The plan is to industrialize the baseline strand for SIS-300 through the production of several billets to achieve consistent and continuous performance
- Set clear targets for improved performance of FAIR magnets and economic CERN injector upgrade and assist manufacturers in this development

Small Filament R&D - 1

- About 50 % of the loss is generated by hysteresis in the filaments
- Simply reducing the filament size does not work

12000 monocores (1.5 mm wide)!

filament distortion near the copper !

Small Filament R&D - 2

Hex single stack Better geometry control

CuNibarriers CuNibarriers

ALST<mark>O</mark>M

Small Filament R&D - 3

CuMn to reduce proximity

CuNi to reduce coupling

Strand R&D Targets

On the Cable

- Open issues remain on basic understanding of collective thermal and electromagnetic behaviors
 - Heat transfer experiments (as proposed)
 - Stability experiments and simulations (as proposed)
 - What is the optimum resistance ?
 - Perform AC loss measurements (program ?)

Inspired by P. Bruzzone, PERITVS DELINEANDI OPTIMORUM DVCTORVM

On the Magnets

- Responsibles (design coordinators) identified for the four magnet families
 - SIS-100 G. Moritz (GSI)
 - PS⁺ D. Tommasini (CERN)
 - SPS⁺ G. Kirby (CERN)
 - SIS-300 P. Fabbricatore (INFN)
- Workplan for the design coordinators:
 - Examine magnet concepts, question the conductor selection, identify main R&D issues, quantify work (prototypes, how many, by when ?)

The final answer will only come from magnet test we need prototypes !

Measurement Issues - 1

- Present capability is well assorted but scattered
 - Fast Digital Integrators and fast rotating coil systems (CERN-AT)
 - Speed, resolution, and accuracy to be proven
 - SPS and CNAO (curved) flux-meters (CERN-AT)
 - Good for main field and homogeneity to few 10⁻⁴, no harmonics
 - Harmonic, fixed coils (BNL)
 - Technique in development, low order harmonics at 10⁻⁴
 - Harmonic analysis in space of repeated cycles in time
 - *Old* method, promising but relies on powering cycle reproducibility
- No off-the-shelf method is available today for the measurement of 3...5 T, 1...4 T/s at 10⁻⁴

The R&D should be adapted to the new requirements

Fast Digital Integrator

CARE

BNL Harmonic Coil Array

The do-it-all Mole

Courtesy of P. Schnizer, GSI

CARE

Measurement Issues - 2

- Good pulsed magnets must have low loss
- - 10 W/m to 20 W/m of magnet length, on average
 - 50 to 100 W per magnet
- The reactive power necessary to pulse the magnet is large
 - Typically 100 kVA per magnet (20 V, 5 kA)
- The measurement of resistive losses of 10⁻³ of the reactive power is a difficult task (requires a rejection at 10⁻⁴)

We should demonstrate the feasibility and accuracy of this measurement

Power Control Issues

- A good pulsed magnetic field requires an excellent control of pulsed current
- Large dynamic range (e.g. 30 for PS⁺) and large controlled voltage (e.g. 1 kV voltage withstand) may pose a challenge for precise control
 - 10⁻⁴ at injection is 3 ppm at flat-top

Early interaction on the PC design is important for the selection of the magnet concept

Networking Results - 1

- More than 70 participants (initial plan on 30 to 50)
- 17 among laboratories and universities
 - Bochvar Institute, CEA, CERN, CIEMAT^(*), EFDA-CSU^(*), ENEA^(*), EPFL-CRPP^(*), FzK^(*), GSI, IHEP, INFN-Frascati, INFN-Genova, INFN-Milano, JINR, KEK, MIT^(*), Ohio State ^(*) fusion/energy laboratories
- 7 major European industries:

Networking Results - 2

- Cross-breeding among laboratories (HEP and Fusion research in particular) on the topic of pulsed magnets
- Industry involved from the start of the brainstorming, bringing focused and relevant experience in this technology
- Very positive response !

We have identified a general interest in the community of *clients* and *producers*

Follow-up

- The material discussed is collected and will be posted on the www site of the Workshop
- The design coordinators will maintain momentum on the issues identified
- Reconvene in 6 months to verify progress

Special session at **WAMDO** April 3-7 2006 CERN (Archamps)

