Theozymes - Compuzymes

chymotrypsin

Chymotrypsin 245 aminoacids

Peptide-template 12 aminoacids

Molecular template for chymotrypsin

$$_{\text{Cyclo}(-Y_1\text{-Lys}^1\text{-}Y_2\text{-Xaa}^2\text{-}Y_3\text{-Lys}^3\text{-}Y_4\text{-Asp}^4\text{-}Y_5\text{-Lys}^5\text{-}Y_6\text{- Xbb}^6\text{-})}$$
Ac-Gly-Ala-Y₇-Ser $_{\text{Ac-Y}_8\text{-His}}$ $_{\text{Ac-Y}_9\text{-Asp}}$

Flowchart

Grade the resultant trajectory with respect to the template

The application (TAS) (1/5)

 TrypsinActSite(TAS) is a new tool that provides an integrated framework to build and predict the best mimetic for the serine protease, chymotrypsin.

The application (TAS) (2/5)

- An extension of the well-known software TINKER (Ponder, J.W) (http://dasher.wustl.edu/tinker/) that:
- (a) constructs branched cyclic peptides of a certain pattern

The application (TAS) (3/5)

 (b) guides the peptides to adopt a conformation similar to the active site

The application (TAS) (4/5)

 (c) subjects the molecules to unconstrained molecular dynamics (implicit solvation environment)

The application (TAS) (5/5)

 (d) grades the resultant trajectories with respect to the actual trypsin spatial arrangement of the active site.

Results

INPUT

	Comments	5			
/opt	# Installation path of TINKER				
1	# Version of TINKER (4.1)				
Gly	# Xaa peptide (Fig. 1)				
Gly	# Xbb peptide (Fig. 1)				
1	# Choice 1	(specific D/L chirality)			
LLDLLD	LDD	# Peptide 1 (Y1Y9)			
LDLLDL	. L D D	# Peptide 2 (Y1Y9)			
DLLDLL	.LLL	# Peptide 3 (Y1Y9)			
DLDDLI	DDDL	# Peptide 4 (Y1Y9)			
	# Leave thi	s line blank to continue			
220000	# The total	time of MD (fs)			
1	# Time step	length (fs)			
2	# Time bety	ween dumps (ps)			
300	# Temperat	ture (K)			
SASA	# Implicit S	olvation model			
amber99	# Force Fie	eld			

OUTPUT

Peptide	RMSd(%)	d 1(%)	d 2(%) d 3(%)	
1	97	4	0	27
2	12	4	0	2
3	1	0	0	0
4	11	10	1	15
Amber9	9/GBSA 9	10	4	7
Charmn 1	1 27/GBSA 4	0	0	0
Charmn 1	100	99	0	15
Amber99/ONION 1 100		100	0	100

TAS + GRIDS

- TAS is especially suited for distributed computing.
- The package can screen over 2.10⁵ substances, exhibiting the pattern (template) for possible mimetics of chymotrypsin.
- This computer process can be easily distributed.

Future Enhancements of TAS

Next editions will take into account

- a. the simulation of other active sites
- b. the choice of the number of the amino acids being in the circle
- c. hydrogen bond directionality constraints
- d. the binding site topology