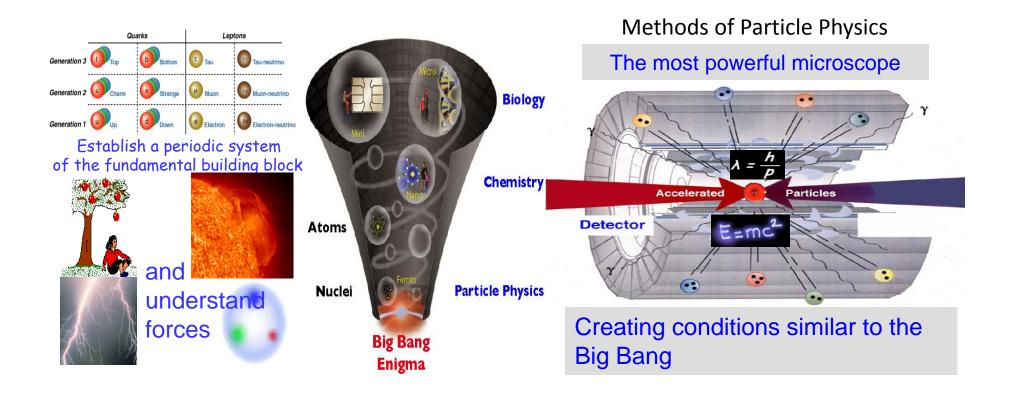


Tools for data analysis

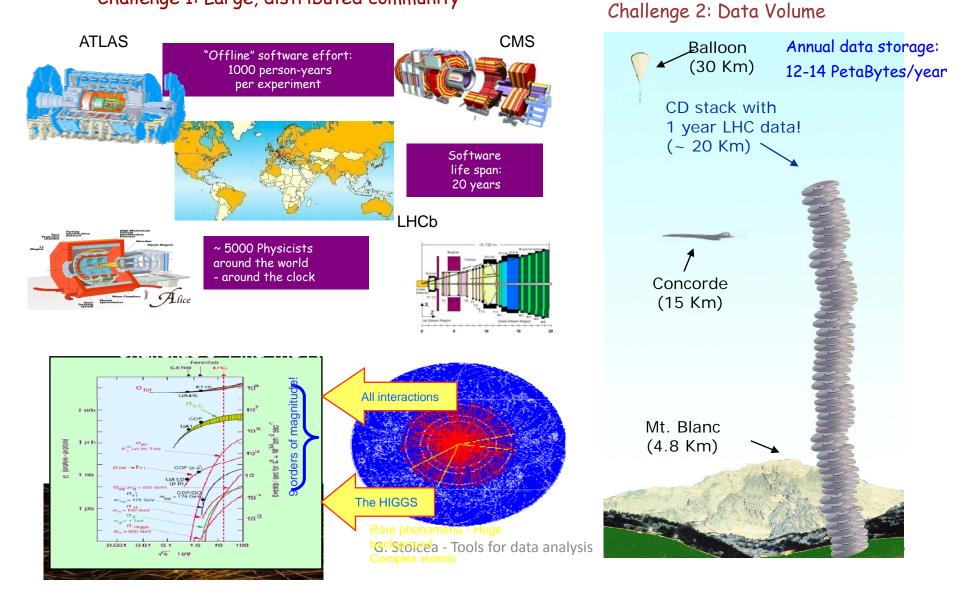
School on High Energy Physics, Bucharest-Magurele 27 October 2008

> Gabriel Stoicea Particle Physics Department IFIN-HH/Bucharest


- Grid Computing
- OpenMP & GPU Computing

Grid Computing

- Grid computing is a form of <u>distributed computing</u> whereby a "super and virtual computer" is composed of a <u>cluster</u> of networked, <u>loosely-coupled</u> computers, acting in concert to perform very large tasks.
- LCG (LHC Computing Grid)



Particle Physics

Particle Physics Challenges

Challenge 1: Large, distributed community

What is the Grid? & How will it work?

- Resource Sharing
 - On a global scale, across the labs/universities
- Secure Access
 - Needs a high level of trust
- Resource Use
 - Load balancing, making most efficient use
- The "Death of Distance"
 - Requires excellent networking
- Open Standards
 - Allow constructive distributed development
- There is not (yet) a single Grid

The GRID middleware:

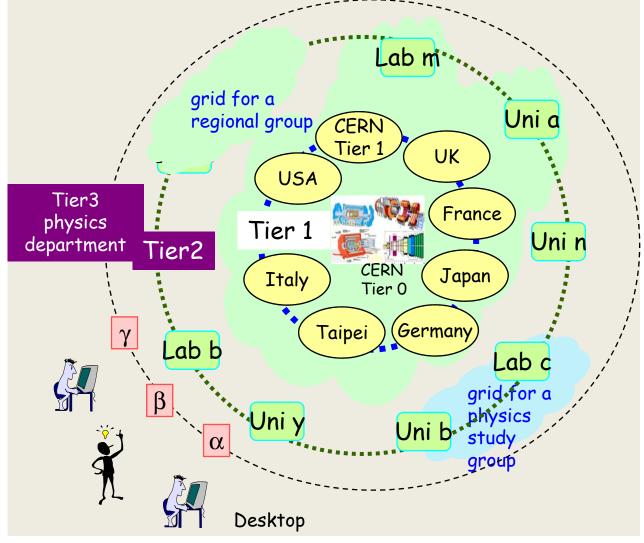
Finds convenient places for the scientists
"job" (computing task) to be run

- Optimises use of the widely dispersed resources
- Organises efficient access to scientific data
- Deals with authentication to the different sites that the scientists will be using
- Interfaces to local site authorisation and resource allocation policies
- Runs the jobs
- Monitors progress
- Recovers from problems
 - ... and

Tells you when the work is complete and transfers the result back!

The LHC Computing Grid Project - LCG

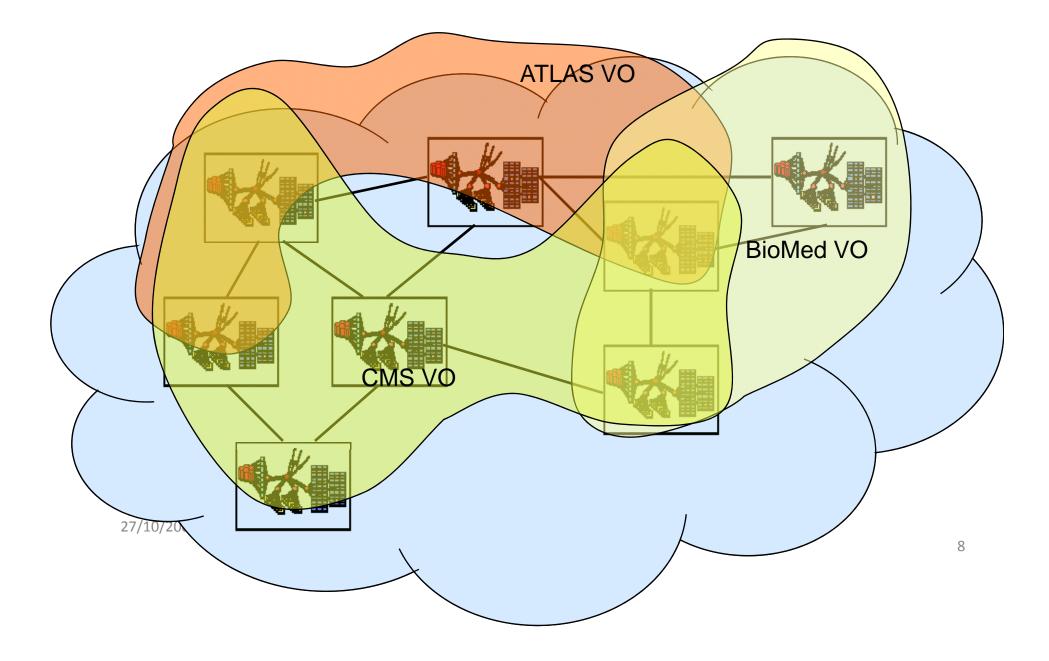
Collaboration


LHC Experiments Grid projects: Europe, US Regional & national centres

Choices

Adopt Grid technology.Go for a "Tier" hierarchy.Use Intel CPUs in standard PCsUse LINUX operating system.

Goal


Prepare and deploy the computing environment to help the experiments analyse the data from the LHC detectors.

G. Stoicea - Tools for data analysis

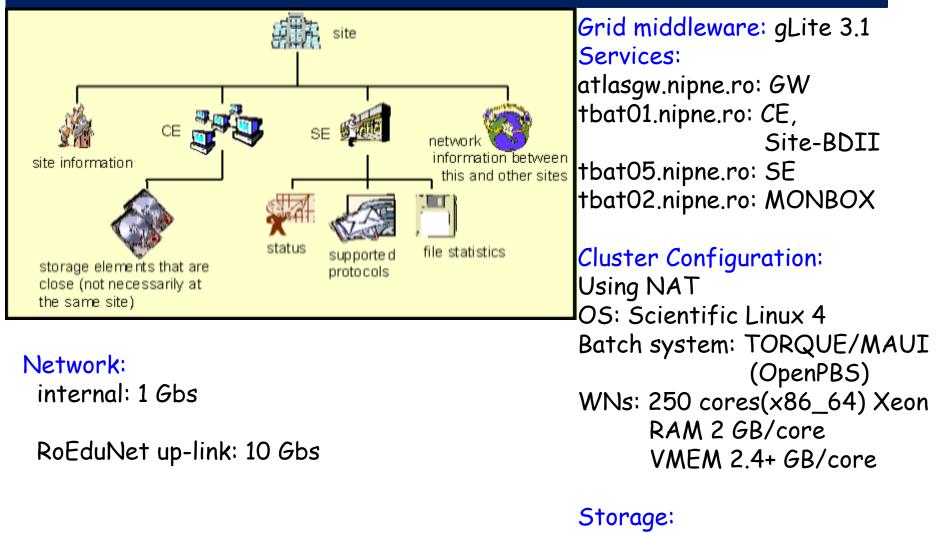
27/10/2008

Virtual Organizations for LHC and others

Romanian Tier2 Federation

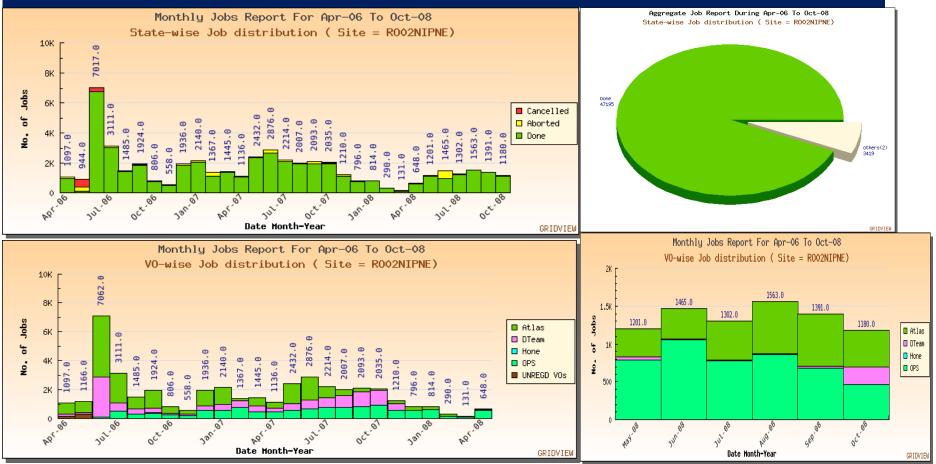
Members: NIHAM (ALICE) RO-02-NIPNE (ATLAS & H1), RO-07-NIPNE (ALICE, ATLAS, H1, LHCb), RO-11-NIPNE (LHCb) Partners: ISS (ALICE), ICI, ITIM (ATLAS)

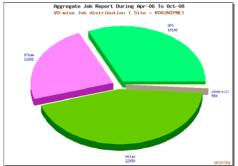
Agreed resources by NIPNE (kSI2k/TB)


	2 <u>007</u>		2008		2009		2010		2011		2012		2013	
TOTAL	463	89.86	1050	239	1700	424	2200	564	2650	705	3050	865	3450	1005
NIHAM	190	45	310	75	600	160	800	230	1000	300	1200	380	1400	450
RO-02-NIPNE	36	2.86	200	70	350	100	400	100	400	100	400	100	400	100
RO-11-NIPNE	50	2	140	4	150	4	200	4	250	5	250	5	250	5
RO-07-NIPNE	187	40	400	90	600	160	800	230	1000	300	1200	380	1400	450
alice	70	20	150	45										
atlas	70	20	150	45										
lhcb	47	0	100	0										

Agreed resources by partners

TOTAL		259	22.5	404.4	41	528	59.5	661.6	77	708	92
ISS		200	20	300	30	400	40	500	50	500	50
ICI		9	0.5	14.4	1	18	1.5	21.6	2	28	2
ІТІМ		50	2	90	10	110	18	140	25	180	40


27/10/2008


RO-02-NIPNE Grid Site

DPM (Disk Pool Manager) type Raw Capacity ~ 75 TB

RO-02-NIPNE Statistics

Overall Efficiency: ~ 98.1 %

G. Stoicea - Tools for data analysis

New Ways

OpenMP

an <u>application programming interface</u> (API) that supports multi-platform <u>shared memory multiprocessing</u> programming in <u>C/C++</u> and <u>Fortran</u> on many architectures, including <u>Unix</u> and <u>Microsoft Windows</u> platforms. It consists of a set of <u>compiler</u> <u>directives</u>, library routines, and <u>environment variables</u> that influence run-time behavior.

Supported by Open Source Tools:

GCC >= 4.2

GPU Computing

With the increasing programmability of commodity graphics processing units (GPUs), these chips are capable of performing more than the specific graphics computations for which they were designed. They are now capable coprocessors, and their high speed makes them useful for a variety of applications.

Free of charge tools:

CUDA Programming Environment from NVIDIA

Summary

- Grids offer a way to solve <u>Grand Challenge problems</u> for the new era of HEP Experiments.
- Grids offer a way of using the information technology resources optimally inside an organization. They also provide a means for offering information technology as a <u>utility</u> for commercial and non-commercial clients, with those clients paying only for what they use, as with electricity or water.
- In the light of new CPU and GPU architectures new ways of parallel computing could be developed for HEP community.