Emilian Dudas

CPhT-Ecole Polytechnique

String Theory

 andParticle Physics

Outline

- Fundamental interactions : why gravity is different
- String Theory : from strong interactions to gravity
- Brane Universes
- constraints : strong gravity versus string effects
- virtual graviton exchange
- Accelerated unification
- Superstrings and field theories in strong coupling
- Strings and their role in the LHC era

1. Fundamental interactions: why gravity is different

There are four fundamental interactions in nature :

Interaction	Description	distances
Gravitation	Rel. gen.	Infinity
Electromagn.	Maxwell	Infinity
Strong	Yang - Mills $(Q C D)$	$10^{-15} \mathrm{~m}$
Weak	Weinberg - Salam	$10^{-17} \mathrm{~m}$

With the exception of gravity, all the other interactions are described by QFT of the renormalizable type.

Physical observables \rightarrow perturbation theory.
The point-like interactions in Feynman diagrams generate ultraviolet (UV) divergences

Renormalizable theory \rightarrow the UV divergences reabsorbed in a finite number of parameters \rightarrow variation with energy of couplings, confirmed at LEP.

Einstein general relativity is a classical theory . Mass (energy) \rightarrow spacetime geometry $g_{\mu \nu}$
Its quantization

$$
g_{\mu \nu}=\eta_{\mu \nu}+\frac{1}{M_{P}} h_{\mu \nu}
$$

leads to a non-renormalizable theory. The coupling of the grav. interaction is

$$
\begin{equation*}
\frac{E}{M_{P}} \tag{1}
\end{equation*}
$$

\rightarrow negligeable quantum corrections at low energies. At high energies $E \sim M_{P}$ (important quantum corrections) or in strong gravitational fields \rightarrow theory of quantum gravity is necessary.

2. String Theory : from strong interactions to gravity

1964 : M. Gell-Mann propose the quarks as constituents of hadrons.

Ex: meson

Quarks are confined in hadrons through interactions
which increase with the distance
\rightarrow the mesons are strings " of color" with quarks at their ends.

If we try to separate the mesons into quarks, we produce other mesons

1967-1968 : Veneziano, Nambu, Nielsen,Susskind

- The properties of the hadronic interactions are well described by string-string interactions. The hadrons are the vibrational modes of the quantum strings.
classical string \rightarrow vibrational modes $\omega_{n}^{2} \sim n M_{s}^{2}$
quantum string \rightarrow particles $M_{n}^{2} \sim n M_{s}^{2}$, with $M_{s} \sim G e V$
Consistency conditions $\rightarrow 26$ spacetime dims
$\rightarrow 22$ extra space dimensions!

Some problemes of the hadronic strings:

- instability : tachyonic scalar $\left(M^{2}<0\right)$ in the spectrum
- all string excitations are bosons (bosonic strings)
- spectrum : in addition to the gauge bosons (spin 1), one particle of spin 2 and zero mass.
- Solution of the first two problems : enlarge the symmetry of the theory : Supersymmetry \rightarrow equal number of bosons and fermions (superstrings), six additional space dimensions.
- 1974 (Scherk-Schwarz) : the interactions of the spin 2 particle is that of $h_{\mu \nu}$ in general relativity ! The spectrum of zero mass of the superstrings contain matter particles (fermions,scalars) and the mediators (bosons of spin 1 and spin 2) of all the four fundamental interactions !

1984-1986 (Green-Schwarz ; Witten, Gross and coll.) : consistency conditions, compactification and chirality in 4d \leftrightarrow topology of the compact six-dim. space.
1997-1998 (Maldacena ; Gubser,Klebanov,Polyakov ; Witten) :

Holographic duality

field theory	string theory	
in 4d	\leftrightarrow	in 10 dims
(strong coupling)		weak coupling .

Closed strings

excitations : gravitons, moduli fields,etc

Open strings

excitations : photon, electrons,etc

Strings do not have point-like interactions \rightarrow no UV divergences !

6. Brane Universes

String Theory has hyper-surfaces of p space dims. called
D-branes, which contain gauge fields (coupling g) and

matter fields

- Unlike the case of the heterotic strings, if SM lives on

D-branes, the fundamental string scale is much smaller than the Planck scale, if the internal volume is large.
Brane Universe $=$ the three SM gauge interactions and matter (open strings) are localized on a Dp (ex. D3) brane Gravity (closed strings) is everywhere ("in the bulk").

The n perpendicular extra dimensions can be of macroscopic size

$$
R_{\perp} \leq 10^{-1} \mathrm{~mm}
$$

constraint coming from search of deviations from Newton's law. The relations

$$
\begin{aligned}
& M_{P}^{2}=\frac{1}{g_{s}} V_{\perp} M_{s}^{2+n} \\
& g^{2}=g_{s} V_{\|} M_{s}^{6-n}
\end{aligned}
$$

with 2 dims. of extreme size $R_{\perp} \sim 10^{-1} \mathrm{~mm}$ give a fundamental string scale

$$
M_{s} \sim 3-10 \quad T e V
$$

Gravity becomes strong at energies

$$
M_{*}=V_{\perp}^{1 /(2+n)} M_{s}>M_{s}
$$

\rightarrow string effects are observable in colliders (LHC), if
TeV strong gravity. Ex :The graviton emission in the bulk : three open and one closed string particles

The inclusive cross-section

$$
\sigma_{F T} \sim \frac{1}{M_{P}^{2}} \sum_{m_{i}=0}^{R E} \sim \frac{E^{n}}{M_{*}^{2+n}}
$$

is considered to be reliable at the field-theory level.

However, string effects appear at $M_{s}<M_{*}$. By an explicit computation

$$
\frac{\sigma-\sigma_{F T}}{\sigma_{F T}} \sim \frac{E^{4}}{M_{s}^{4}}
$$

Virtual graviton exchange

Another important process for the large Xtra dim. scenario: virtual graviton exchange

For $n \geq 2$ perpendicular dimensions, summation over virtual gravitons is UV divergent

$$
A \sim \frac{1}{M_{P}^{2}} \sum \frac{1}{s-\left(m_{1}^{2}+\cdots m_{n}^{2}\right) / R_{\perp}^{2}} \sim \frac{1}{M_{P}^{2}} R_{\perp}^{2}\left(R_{\perp} \wedge\right)^{n-2}
$$

where the summation was cut for KK masses heavier than \wedge. The result can be written

$$
A \sim \frac{\Lambda^{n-2}}{M_{*}^{2+n}} \sim \frac{c^{n-2}}{M_{*}^{4}}
$$

Generically it is believed that string theory regulates the divergence, so $\wedge=c M_{*}$.

However, despite appearencies, this is a one-loop diagram in string theory,

which has a dual interpretation (the open-closed duality) :
i) Tree-level gravitational exchange.
ii) One-loop diagram with charged states running in the loop.

Main corrections to four-point functions : tree-level exchanges of string oscillators.

Experimental constraints:

- parallel dimensions : $R_{\|} \leq 10^{-17} \mathrm{~cm}$
- perpendicular dimensions : $R_{\perp} \leq 10^{-1} \mathrm{~mm}$
- If SUSY breaking on the branes, $M_{S U S Y} \sim M_{s}$

$$
m_{\text {bulk moduli }} \sim \frac{M_{S U S Y}^{2}}{M_{P}} \sim 10^{-3} \mathrm{eV}
$$

The cosmology is completely different in the early univers
\rightarrow observable signatures in the CMB ?

5. Accelerated Unification

- Gauge coupling unification seems to predict a very high unification scale M_{s}, inaccessible to colliders. Is there's a way to get unification at low energies ?
- Yes. The elementary particles: electron, quarks, etc propagate in the extra dimensions. Their Kaluza-Klein states produce an accelerated evolution of the couplings.

The one-loop evolution of gauge couplings in 4 d between energy scales μ_{0} and μ is
$\frac{1}{\alpha_{a}(\mu)}=\frac{1}{\alpha_{a}\left(\mu_{0}\right)}+\frac{1}{2 \pi} \sum_{r} \operatorname{Str} \int_{1 / \mu^{2}}^{1 / \mu_{0}^{2}} \frac{d t}{t} Q_{a, r}^{2}\left(\frac{1}{12}-\chi_{r}^{2}\right) e^{-t m_{r}^{2}}$.

- Start with MSSM in 4d and extend it to $R^{4} \times S^{1}$, a circle of radius $R_{\|}$. In this case the running generalizes to

$$
\begin{aligned}
& \frac{1}{\alpha_{a}(\mu)}=\frac{1}{\alpha_{a}\left(\mu_{0}\right)}+\frac{1}{2 \pi} \sum_{r} \operatorname{Str} \int_{1 / \mu^{2}}^{1 / \mu_{0}^{2}} \frac{d t}{t} \times \\
& Q_{a, r}^{2}\left(\frac{1}{12}-\chi_{r}^{2}\right)\left(\sum_{n} e^{-t m_{n, r}^{2}\left(R_{\|}\right)}+e^{-t m_{r}^{2}}\right)
\end{aligned}
$$

Take $\mu_{0}=M_{Z}$, one finds

$$
\begin{aligned}
& \frac{1}{\alpha_{a}(\mu)}=\frac{1}{\alpha_{a}\left(M_{Z}\right)}-\frac{b_{a}}{2 \pi} \ln \frac{\mu}{M_{Z}}-\frac{\tilde{b}_{a}}{2 \pi} \int_{1 / \mu^{2}}^{1 / M_{Z}^{2}} \frac{d t}{t} \theta_{3}^{\delta}\left(\frac{i t}{\pi R_{\|}^{2}}\right) \\
& \simeq \frac{1}{\alpha_{a}\left(M_{Z}\right)}-\frac{b_{a}}{2 \pi} \ln \frac{\mu}{M_{Z}}+\frac{\tilde{b}_{a}}{2 \pi} \ln \left(\mu R_{\|}\right) \\
& -\frac{\tilde{b}_{a}}{2 \pi}\left[\left(\mu R_{\|}\right)^{\delta}-1\right] .
\end{aligned}
$$

- The power-like term $\left(\mu R_{\| \mid}\right)^{\delta} \gg 1$ overtakes the logarithmic terms in the higher-dimensional regime and governs the eventual unification pattern.

Unification of gauge couplings in the presence of extra spacetime dimensions. We consider two representative cases: $R^{-1}=10^{5} \mathrm{GeV}$ (left), $R^{-1}=10^{8} \mathrm{GeV}$ (right). In both cases we have taken $\delta=1$ and $\eta=0$.

7. Superstrings and field theories in strong

 coupling| field theories | string theory |
| :--- | :---: |
| in 4d | \leftrightarrow |
| (strong coupling) | |
| SUSY, conformal | |
| in 10 dims, compling | |
| sur $A d S_{5} \times X_{5}$ | |

\rightarrow Nonperturbative methods in field theory
Ex.(1): Holographic QCD : 5d computation of hadrons properties (Sakai-Sugimoto, 2004)

- (large) N_{c} D4 branes $\rightarrow S U\left(N_{c}\right)$ gauge group (QCD)
- $N_{f} D 8-\bar{D} 8$ pairs $\rightarrow S U\left(N_{f}\right) \times S U\left(N_{f}\right)$ chiral symmetry
- Geometry of chiral symmetry breaking
- Meson observables via tree-level 5d KK techniques

Ex. (2) : RHIC physics : quark-gluon plasma viscosity in strong coupling regime

- Some agreement between experimental value and computation via (AdS/CFT) correspondence at finite T

Strings : their futur role in particle physics ?

The LHC (Large Hadron Collider) era started, with energies (2009) of 14 TeV , in searching for physics Beyond the Standard Model. Possibilities :

- Discovery of the Higgs scalar, nothing else \rightarrow problem for all high energy community
- No discovery \rightarrow perturbative consistency (unitarity)
of the SM broken around 1 TeV
- new nonperturbative physics (ex. technicolor) \rightarrow holographic studies ?
- Discovery low-energy SUSY :
\rightarrow if transmission SUSY breaking is gravitational \rightarrow Supergravity \rightarrow Superstrings
\rightarrow try to discover signatures of moduli fields
- Large extra spacetime dimensions \leftrightarrow string theory at a low scale $M_{s} \rightarrow$ spectacular effects of strings : Regge states, unification at low energy, etc

