Teorii efective pentru interactiile tari in fizica cuarcilor grei

Dan Pirjol

IFIN, 27 Octombrie 2008

Outline

- Effective field theories for strong and weak interactions
- Heavy quark effective theory (HQET)
- Large recoil: Soft-Collinear Effective Theory
- Introduction to SCET
 - Formalism
 - Factorization relations for exclusive B decays

Effective field theories

The weak and strong interactions of the SM contain many disparate scales $\frac{t}{t}$

The good success of the SM -> low energy predictions must be insensitive to the highenergy theory

Effective theory approach:

identify small expansion parameters.

• $m_{u,d,s,c,b} \ll m_{W,Z,t}$

• $\Lambda_{QCD}/m_{b,c} \ll 1$

Effective theory of weak interactions Heavy quark effective theory X^{\pm}

b

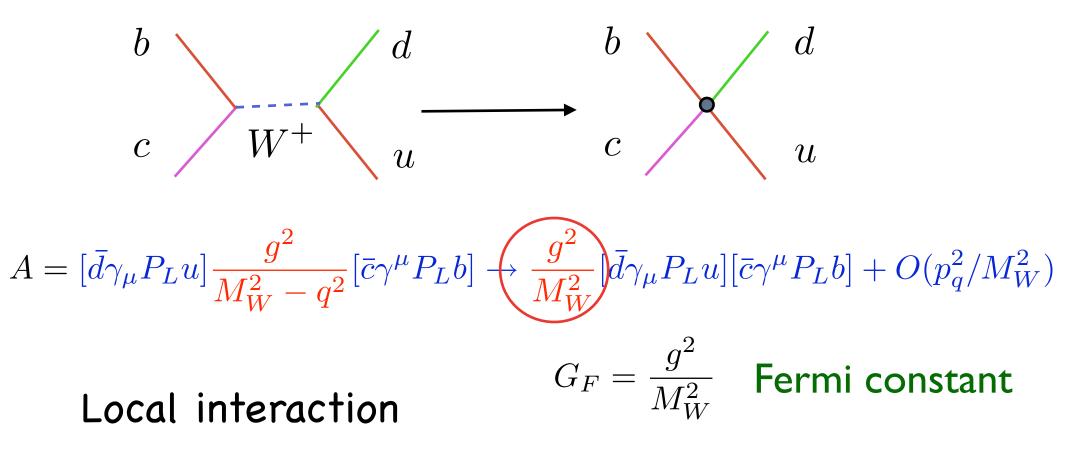
C

S

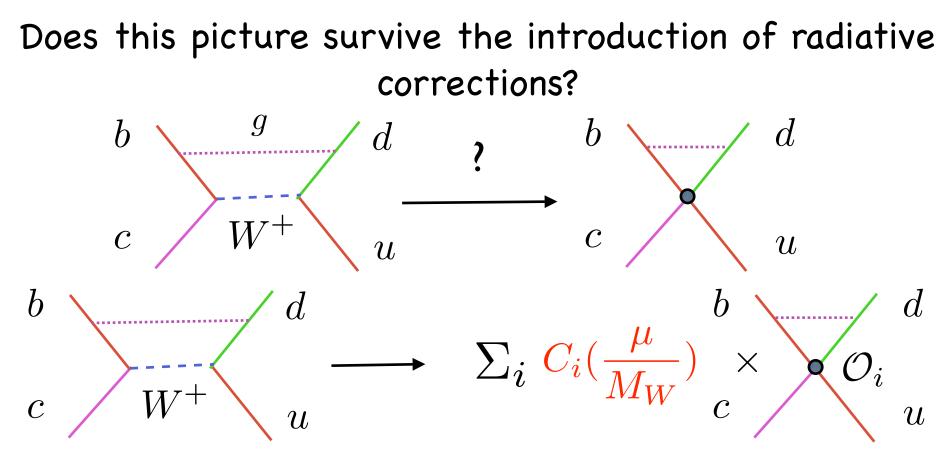
u, d

Weak interactions

Fermi 4-quark interaction



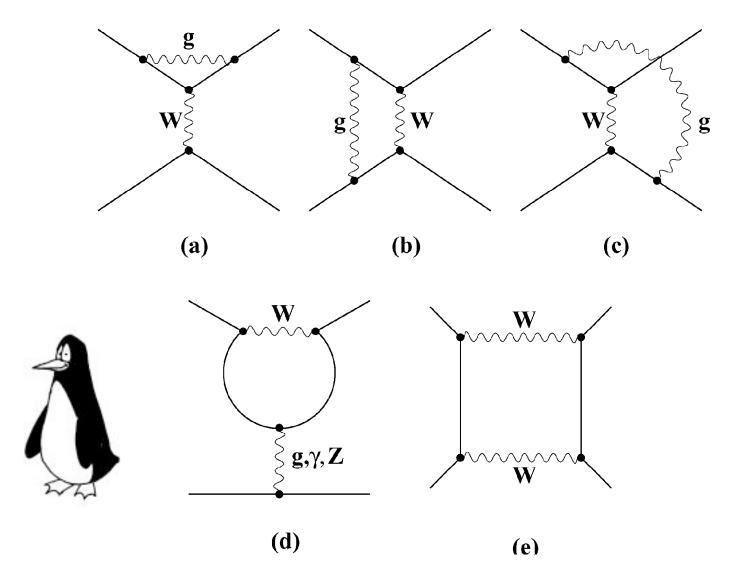
Radiative corrections



 $C(\mu/M_W)$ = Wilson coefficient containing the contributions of the hard loop momenta

Can be computed in perturbation theory at any order in $\alpha_s(M_W)$ \longrightarrow Matching

Typical diagrams contributing to matching beyond tree level

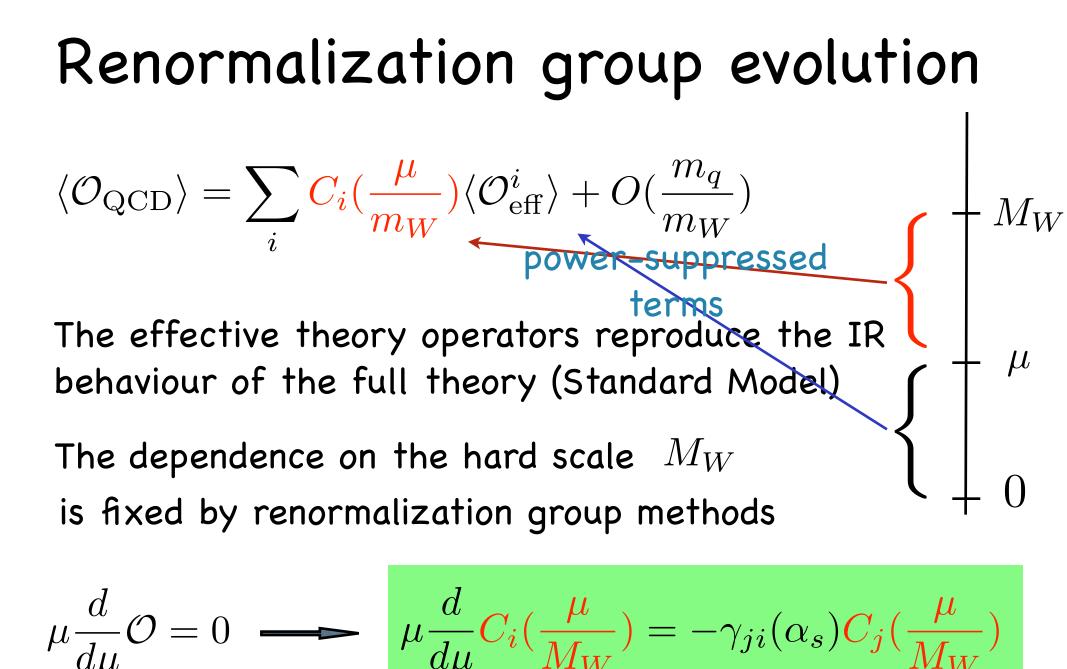


Multiple operators O_i are induced in the low energy theory through radiative corrections The complete set of operators contains the most general local operators satisfying the conditions:

- leading order in power counting (dimension-6)
- have the correct transformation properties under the symmetries of the theory (parity, isospin, chirality)

$$\mathcal{H}_W = \frac{G_F}{\sqrt{2}} V_{cb} V_{ud}^* \{ C_1(\mu) [\bar{c}\gamma_\mu P_L b] [\bar{d}\gamma^\mu P_L u] + C_2(\mu) (\bar{d}\gamma_\mu P_L b) [\bar{c}\gamma^\mu P_L u] \}$$

Complete effective weak Hamiltonian for $b \to c d \bar{u}$ decays

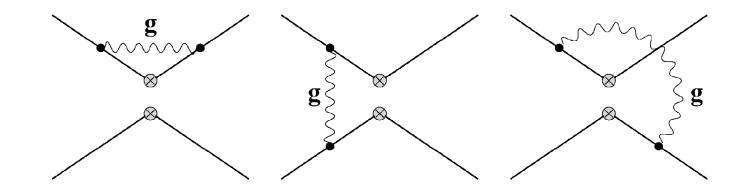


 $\gamma_{ji}(\alpha_s)$ = anomalous dimension matrix of the operators \mathcal{O}_i

Leading log evolution for the $b \rightarrow c d \bar{u}$ effective Hamiltonian

$$\mathcal{O}_1 = (\bar{c}b)_{V-A}(\bar{d}u)_{V-A}$$
$$\mathcal{O}_2 = (\bar{c}T^ab)_{V-A}(\bar{d}T^au)_{V-A}$$

$$\mu \frac{d}{d\mu} \begin{pmatrix} c_1(\mu) \\ c_2(\mu) \end{pmatrix} = -\gamma^T \begin{pmatrix} c_1(\mu) \\ c_2(\mu) \end{pmatrix} \qquad \gamma^T = \frac{\alpha_s}{2\pi} \begin{pmatrix} 0 & -\frac{4}{3} \\ -6 & 2 \end{pmatrix}$$



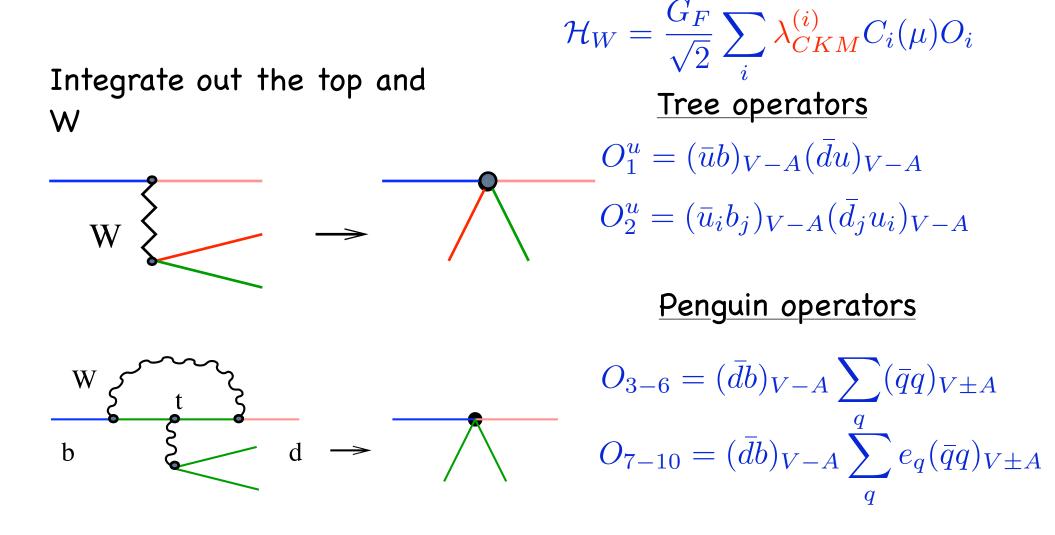
Operator basis

$$c_{1}(\mu) = \frac{1}{3} \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(M_{W})} \right)^{12/23} + \frac{2}{3} \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(M_{W})} \right)^{-6/23} = 1.12$$

$$c_{2}(\mu) = - \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(M_{W})} \right)^{12/23} + \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(M_{W})} \right)^{-6/23} = -0.08$$

$$(\mu = 4.2 \text{ GeV})$$

General electroweak Hamiltonian



+ new physics contributions...

Now known at NNLO Gorbahn, Haisch – hep-ph/0411071 Gorbahn, Haisch, Misiak – hep-ph/0504194

Effective theories – summary

 μ_h

 μ

 $\mu_{\rm low}$

In the presence of widely disparated scales $\mu_h \gg \mu_{low}$ the effects of loop momenta in this range can be accounted for using an effective theory

1. integrate out the degrees of freedom associated with the hard scale μ_h

$$\mathcal{H}_{eff} = \Sigma_i C_i (\frac{\mu}{\mu_h}) \mathcal{O}_i + \cdots$$

2. matching at $\mu = \mu_h$ gives $C_i(1)$

3. Solve the RGE for the Wilson coeffs

4. repeat as many times as necessary

Effective theories for heavy quark physics

Heavy flavor decays

- Bound states of b and light quarks
 - mesons (B^-,B^0,B_s)
 - baryons $(\Lambda_b, \Xi_b^-, \Xi_b^0)$
- Heaviest stable bound states in QCD ($\geq 5.28 \text{ GeV}$)
- Rich spectrum, many decay channels
- Important source of information about CP violation, CKM parameters, new physics

CKM matrix

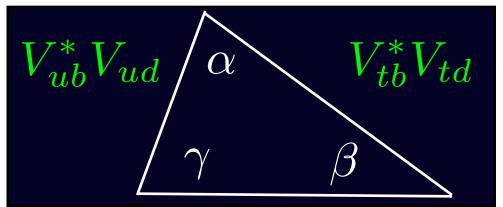
Parameterizes the strength of the charged weak couplings in the Standard model

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 0.975 & 0.221 & 0.003 \\ 0.221 & 0.975 & 0.040 \\ 0.005 & 0.040 & 1.000 \end{pmatrix}$$

Experimental information about the smallest entries can be summarized by the unitarity relation

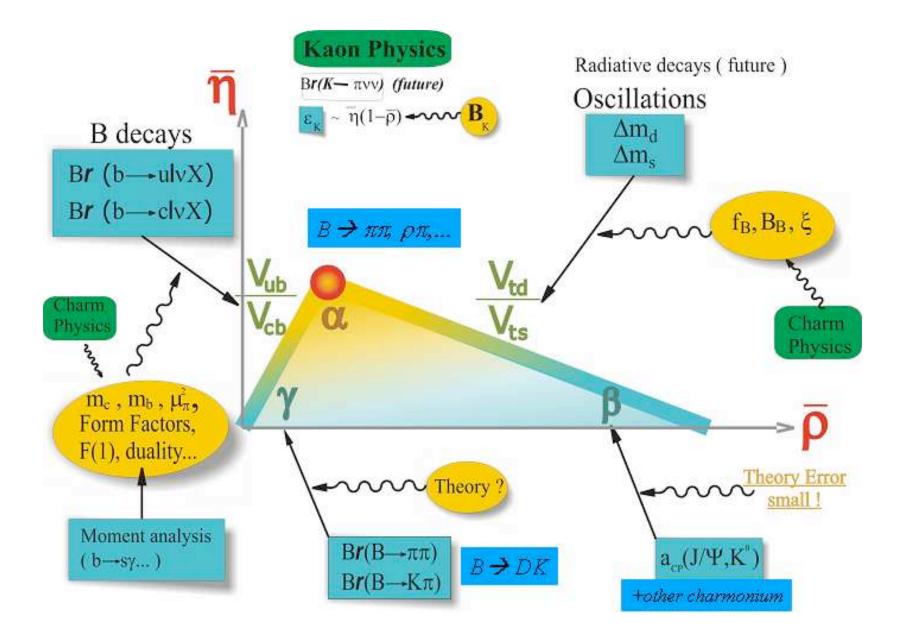
$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

Unitarity triangle



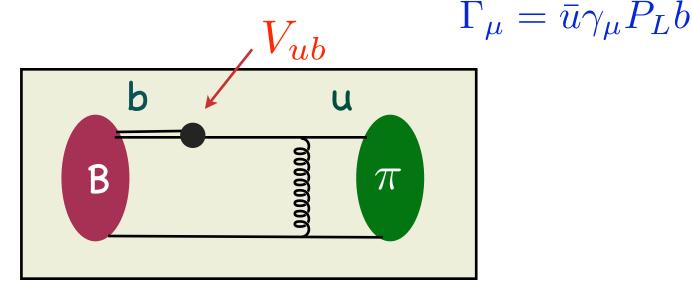
 V_{ij}

Constraining the CKM triangle with B decays



Weak semileptonic $B \to \pi \ell \bar{\nu}$ decays

Mediated by the heavy-to-light current

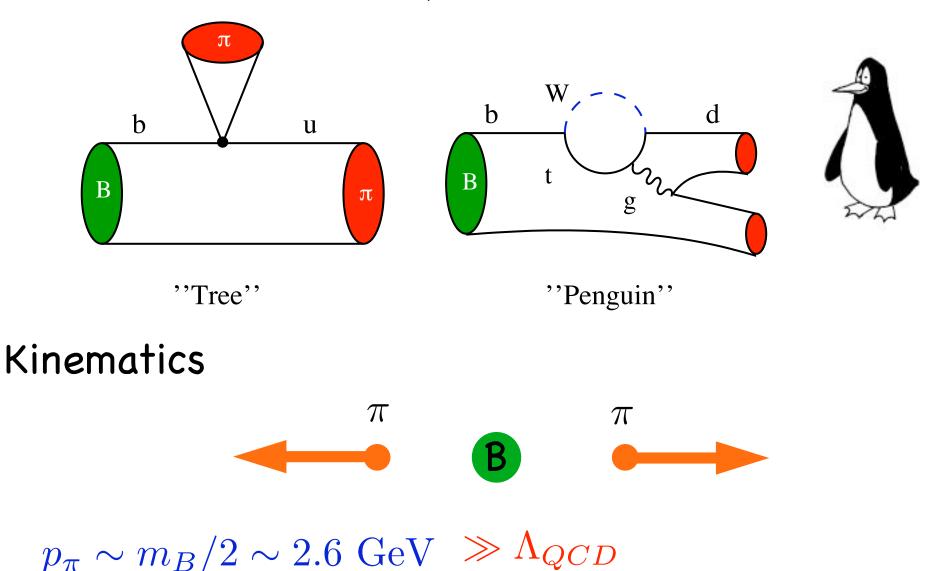


Parameterized by two form factors

$$\langle \pi(p') | \bar{u} \gamma_{\mu} P_L b | \bar{B}(p) \rangle = f_+(q^2)(p+p')_{\mu} + f_-(q^2)(p-p')_{\mu}$$

 $f_{\pm}(q^2)$ depend on hadronic dynamics (QCD)

Nonleptonic B decays Examples: $B^0 \rightarrow \pi^+\pi^-$, $B^0 \rightarrow K^+\pi^-$



Strong interaction effects

Weak interactions of quarks take place inside hadrons -> need to account for strong interaction nonperturbative effects

 $\langle M_1 M_2 | \mathcal{H}_{EW} | \bar{B} \rangle = ?$

Controlling these effects is a central part of SM physics

- Lattice QCD
- Exploit symmetries
 flavor SU(3) of QCD:
- - chiral symmetry
 - heavy quark symmetry

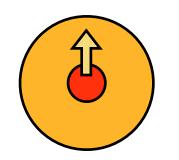
Effective field theories

Factorization theorems of hard QCD

Recent progress from Soft-Collinear Effective Theory

Energy scales in B physics

Heavy quarks interacting with soft quarks and gluons



Relevant energy scales: $\Lambda \sim 500 \text{ MeV}, m_b \sim 4.6 \text{ GeV}$

- 1. Small expansion parameter $\Lambda/m_b \sim 0.1$
- 2. Symmetries at leading order in Λ/m_b

HQET = the appropriate effective theory

Scales in HQET

Heavy quark interacting with soft gluon fields

The quark momentum contains a large fixed component $p = m_b v + k$ Residual momentum Label $Q(x) = e^{-im_Q v \cdot x} h(x)$

Modes	k	Fields	
Hard	m_b	_	
Soft	Λ	$h_v \hspace{0.1in} q$	

HQET for a static quark

Take the heavy quark mass to infinity -> static limit The heavy quark acts like a fixed source of color field

Propagator
$$S(p) = i \frac{p + m_b}{p^2 - m_b^2}$$

$$p = m_b v + k$$

$$S(p) = i \frac{m_b \psi + k + m_b}{(m_b v + k)^2 - m_b^2} = \frac{i}{v \cdot k} \frac{1 + \psi}{2} + O(k/m_b)$$

The heavy quark mass has disappeared!

This is the propagator corresponding to the Lagrangian $\mathcal{L} = \overline{h}v \cdot iDh$ Leading order HQET Lagrangian

HQET Lagrangian

Split the heavy quark field Q into `large' and `small' components with respect to velocity v

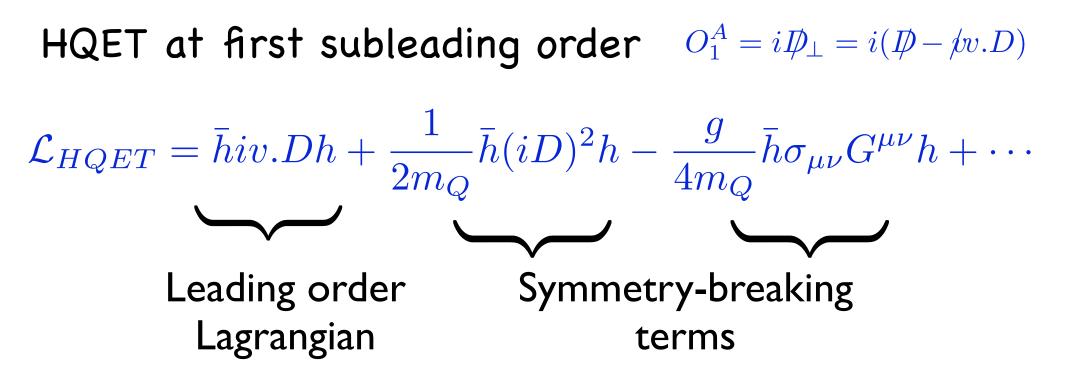
$$Q(x) = e^{-im_Q v \cdot x} h^{(+)} + e^{im_Q v \cdot x} h^{(-)} \qquad \not h^{(\pm)} = \pm h^{(\pm)}$$

Apply a sequence of field transformations which decouples them – Foldy-Wouthuysen transformation

$$\mathcal{L} = \bar{Q}(iD\!\!\!/ - m_Q)Q \rightarrow \mathcal{L}_{HQET}[h^{(+)}] + \mathcal{L}_{HQET}[h^{(-)}]$$

$$Q(x) = e^{-im_Q v.x} e^{\frac{1}{2m_Q}O_1^A} e^{\frac{1}{2m_Q^2}O_2^A} \cdots h^{(+)}$$

$$+ e^{im_Q v.x} e^{\frac{1}{2m_Q}O_1^A} e^{\frac{1}{2m_Q^2}O_2^A} \cdots h^{(-)}$$



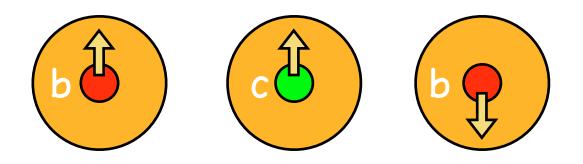
Including radiative corrections

Example: heavy-to-light current

$$0|\bar{q}\gamma_{\mu}\gamma_{5}b|\bar{B}\rangle = C\left(\frac{\mu}{m_{b}}\right)\langle 0|\bar{q}\gamma_{\mu}\gamma_{5}b_{v}|\bar{B}_{v}\rangle + O(\Lambda/m_{b})$$

Wilson coefficient soft matrix element

HQET - symmetries



Flavor symmetry: the physics is independent on the heavy flavor: b vs. c

Spin symmetry: the heavy quark spin orientation is irrelevant

HQET – formalism

The heavy mesons D, D^* form a spin doublet

$$j_{\ell} = \frac{1}{2}^{-} \to J^{P} = 0^{-}, 1^{-}$$

Combine them into a superfield

$$H^{a} = \frac{1+\psi}{2} \left[D^{a*}_{\mu} \gamma^{\mu} - D^{a} \gamma_{5} \right]$$

Transforms as: $\begin{array}{ll} H^a
ightarrow SH^a & {
m under spin symmetry} \\ H^a
ightarrow U_{ab}H^b & {
m under flavor symm.} \end{array}$

Construct operators using only H having the same transformation properties as the original QCD operators

Example: heavy-to-heavy decays

Semileptonic decays $\bar{B} \to D^{(*)} \ell \bar{\nu}_{\ell} \implies |V_{cb}|$

 $\langle D^{(*)}(v')|\bar{c}\Gamma b|\bar{B}(v)\rangle$

Strong interaction effects – hadronic matrix elements

<u>Heavy quark symmetry prediction:</u>

 $\langle D^{(*)}(v')|\bar{c}\Gamma b|\bar{B}(v)\rangle = \xi(v \cdot v') \operatorname{Tr}\left[\bar{H}_{v'}^{(c)}\Gamma H_{v}^{(b)}\right] + O\left(\frac{\Lambda}{m_c}\right)$

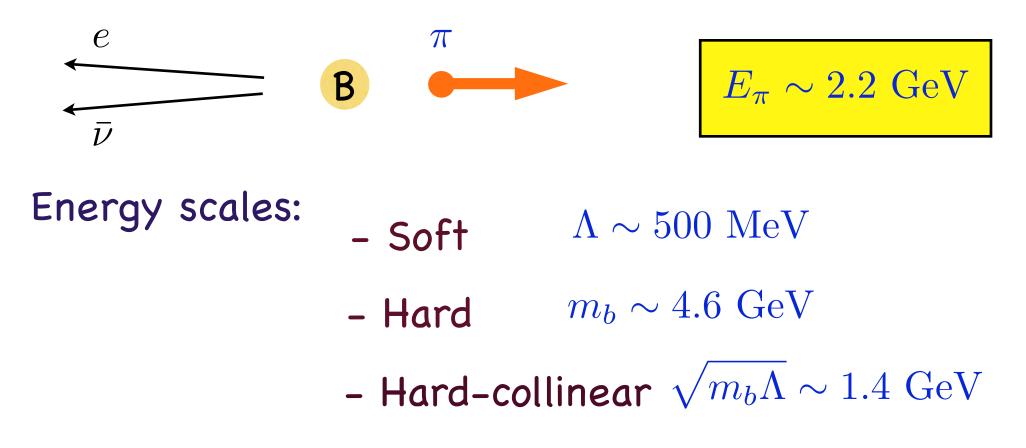
reduced matrix element = Isgur-Wise function

 $1 (B \rightarrow D) + 4 (B \rightarrow D^*) = 5$ form factors fixed in terms of just one IW function

Energetic hadrons

Construct a heavy-quark expansion for processes involving both soft and energetic light hadrons

Example: semileptonic $B \rightarrow \pi \ell \bar{\nu}$ decay at large recoil



The soft-collinear effective theory (SCET)

- Systematic power counting in Λ/m_b implemented at the level of momenta, fields, operators
- Construct effective Lagrangians for strong and weak interactions expanded in Λ/m_b
- Guiding principles: new symmetries soft/ collinear gauge invariance, reparameterization invariance
- Nonlocal operators and Lagrangians

Soft-Collinear Effective Theory (formalism)

- Introducing the relevant modes
- Formal derivation of the SCET Lagrangian
- Power counting
- Collinear gauge invariance
- General procedure for constructing operators

Light-cone geography

<u>Light cone coordinates</u> $(x^0, x^1, x^2, x^3) \rightarrow (x_+, x_-, x_\perp)$

$$x_{\pm} = x^0 \pm x^3$$
 , $x_{\perp} = (x^1, x^2)$

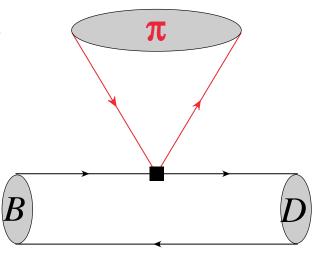
Light cone unit vectors $n^{\mu} = (1, 0, 0, 1)$ $\bar{n}^{\mu} = (1, 0, 0, -1)$ vector projection

$$egin{array}{ll} n\cdot n &= 0 \ ar{n}\cdotar{n} &= 0 \ n\cdotar{n} &= 2 \end{array}$$

$$\begin{aligned} x_{\mu} &= \frac{1}{2} n \cdot x \bar{n}_{\mu} + \frac{1}{2} \bar{n} \cdot x n_{\mu} + x_{\mu}^{\perp} \\ &= \frac{1}{2} x_{+} \bar{n}_{\mu} + \frac{1}{2} x_{-} n_{\mu} + x_{\mu}^{\perp} \end{aligned}$$

SCET - Modes

Energetic quarks and leptons -> collinear modes



$$p_c = (p_+, p_-, p_\perp) \sim \left(\frac{\Lambda^2}{Q}, Q, \Lambda\right) = Q(\lambda^2, 1, \lambda)$$

A 2

Include also soft quarks and gluons with momenta

$$p_s = (p_+, p_-, p_\perp) \sim (\Lambda, \Lambda, \Lambda) = Q(\lambda, \lambda, \lambda)$$

Construct the effective theory as an expansion in $\lambda^2 = \frac{\Lambda}{O}$

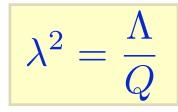
Fields and momentum scaling

Introduce quark and gluon fields for each relevant region of loop momenta

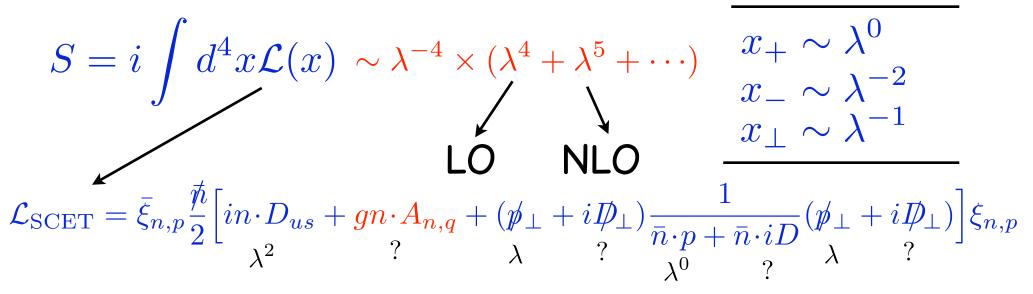
modes	field	$p_{\mu} \sim (+, -, \bot)$	p^2
hard		(Q,Q,Q)	Q^2
hard-collinear	$A_{n,q}, \xi_{n,p}$	$(\Lambda,Q,\sqrt{Q\Lambda})$	ΛQ
collinear	$A_{n,q}, \xi_{n,p}$	$(\Lambda^2/Q,Q,\Lambda)$	Λ^2
soft/ultrasoft	A_s,q,b_v	$(\Lambda,\Lambda,\Lambda)$	Λ^2

Can be perturbative/nonperturbative, depending on their virtuality

Power counting



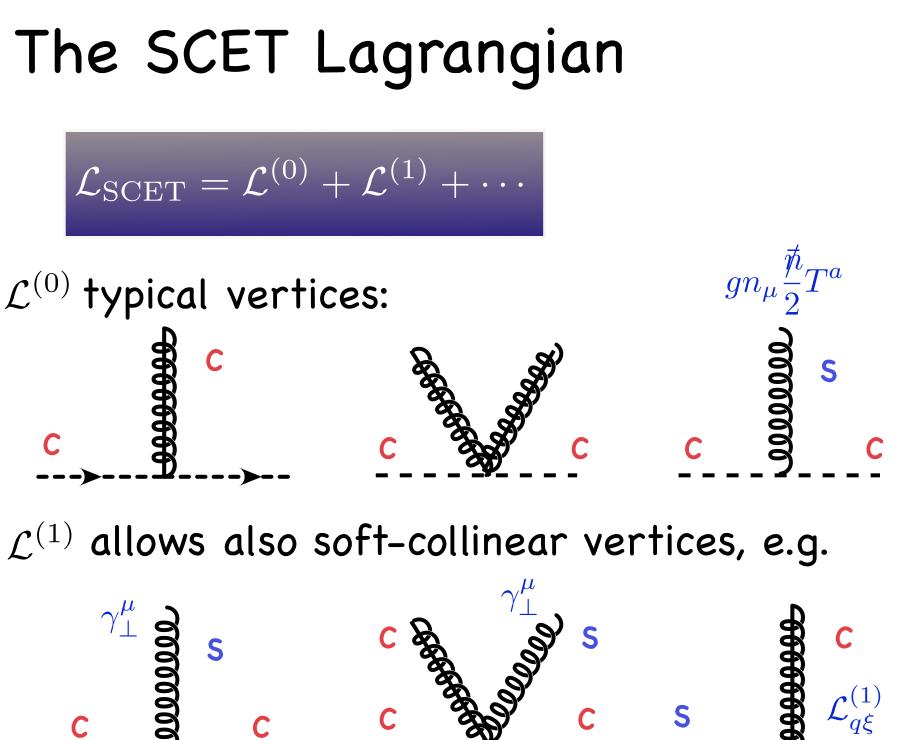
Assign a power counting in λ to the effective theory fields such that the leading action is $O(\lambda^0)$



Covariant derivatives can act on the collinear gluon fields, producing large factors \sim Q.

Redefine the collinear gluon field to make explicit all collinear momenta

$$A^{a\mu}(x) = e^{-iq \cdot x} A^{a\mu}_{n,q}(x)$$



Soft-collinear factorization

Ultrasoft gluons have eikonal couplings to the collinear quarks and gluons at leading order in SCET. a, μ b, ν c, λ c, λ c, λ

These couplings can be absorbed to all orders into field redefinitions

 $-ign_{\mu}T^{a}$

 $q_1 q_1 q_1 q_2 q_2$

Y[n.A] is a Wilson line of the ultrasoft gluon field $Y(x) = P \exp\left(ig \int_{-\infty}^{x} d\lambda n \cdot A_{\rm us}(\lambda n)\right)$

Mathematical identity

$$n^{\mu} \frac{\partial}{\partial x_{\mu}} \Big[\exp \Big(\int_{-\infty}^{x} \mathrm{d}\lambda f(\lambda n) \Big) \Big] = f(x)$$

 \Rightarrow Y[n.A] satisfies the equation of motion $n \cdot i D_{us} Y(x) = (n \cdot i \partial + gn \cdot A_{us}) Y(x) = 0$

 \Rightarrow The leading order SCET Lagrangian becomes

$$\mathcal{L}^{(0)} = \bar{\xi}_{n,p} \frac{\not{\bar{p}}}{2} \Big[in \cdot D_{us} + gn \cdot A_{n,q} + i \mathcal{P}_{\perp} \frac{1}{\bar{n} \cdot i \mathcal{D}} i \mathcal{P}_{\perp} \Big] \xi_{n,p}$$
$$= \bar{\xi}_{n,p}^{(0)} \frac{\not{\bar{p}}}{2} \Big[in \cdot \partial + gn \cdot A_{n,q}^{(0)} + i \mathcal{P}_{\perp}^{(0)} \frac{1}{\bar{n} \cdot i \mathcal{D}^{(0)}} i \mathcal{P}_{\perp}^{(0)} \Big] \xi_{n,p}^{(0)}$$

General result

$$\mathcal{L}[\xi_n, A_n^{\mu}, A_{us}^{\mu}] = \mathcal{L}[\xi_n^{(0)}, A_n^{(0)\mu}, 0]$$

The field redefinition removes all ultrasoft gluon couplings from the Lagrangian (at leading order) and shifts them into operators (currents, etc.)

Example: heavy-light current

 $\mathcal{J}(\omega) = [\bar{\xi}_n W]_{\omega} \Gamma b_v = [\bar{\xi}_n^{(0)} W^{(0)} Y_n^{\dagger} [n \cdot A_{\mathrm{us}}]]_{\omega} \Gamma b_v$

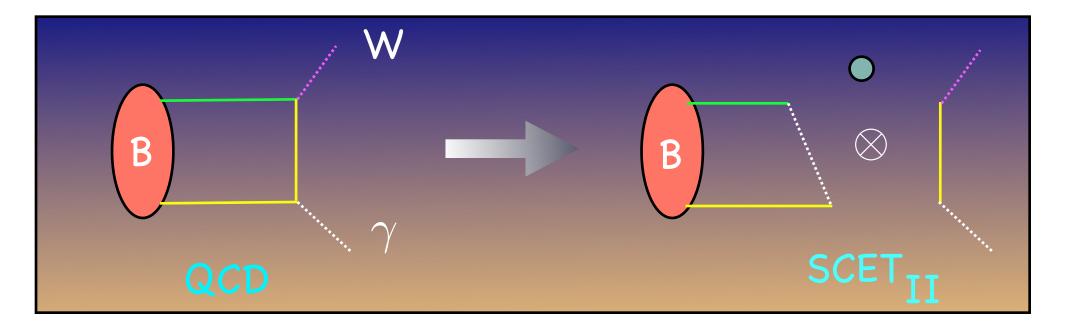
 \Rightarrow Simplifies all-orders factorization proofs

Application

Factorization in radiative leptonic B decays

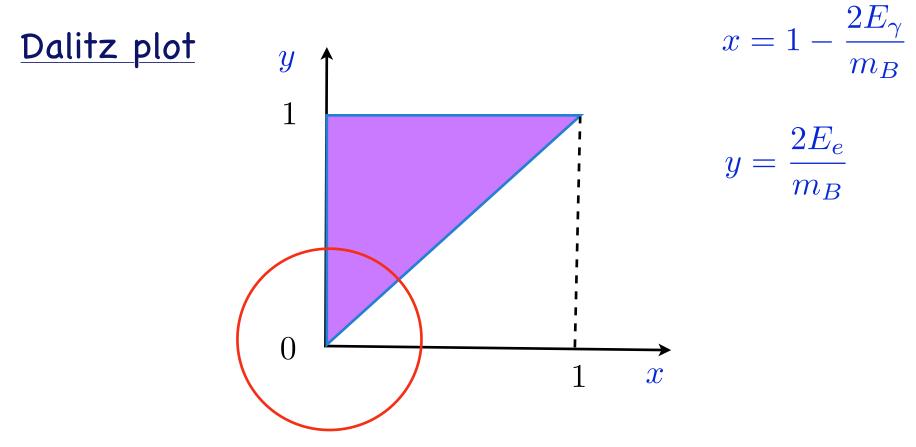
Factorization in $B\to\gamma\ell\bar\nu$

Simplest B decay, mediated by the b->u weak current



In the kinematic region w/ a hard photon $E_{\gamma} \gg \Lambda_{\rm QCD}$ this amplitude can be described in factorization

Kinematics $B \to \gamma \ell \bar{\nu}$



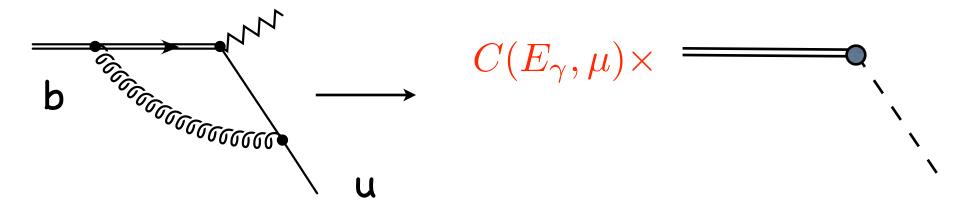
Validity region of the factorization relation:

 $E_{\gamma} \gg \Lambda_{QCD} \sim 500 \text{ MeV}$ $1 - x \gg 0.2$

Factorization relation

$$A(B \to \gamma \ell \bar{\nu}) \sim C^{(v)}(E_{\gamma}, \mu) \int_0^\infty dk_+ J(k_+) \phi_B^+(k_+)$$

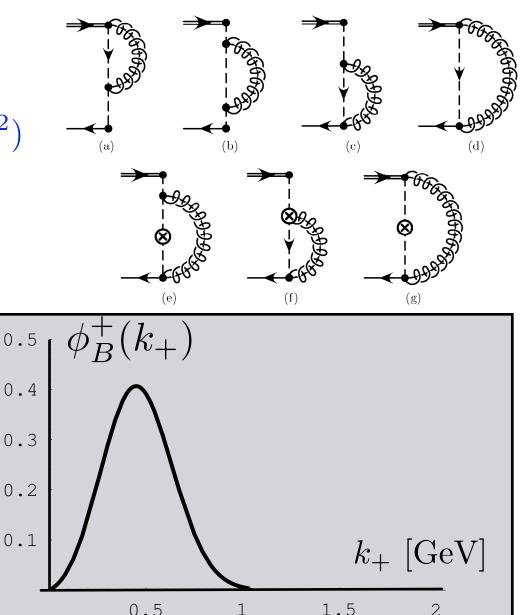
• Wilson coefficient: contains physics effects from the hard scale $\mu=Q\equiv 2E_{\gamma}\sim m_b$



$$C(E_{\gamma},\mu) = 1 - \frac{\alpha_s C_F}{4\pi} \left[2\log^2 \frac{2E_{\gamma}}{\mu} - 5\log \frac{2E_{\gamma}}{\mu} + \cdots \right]$$

• Jet function:

$$J(k_{+}) = \frac{1}{k_{+}} \left(1 + \frac{\alpha_s C_F}{4\pi} f(E_{\gamma} k_{+}/\mu^2)\right)$$



• B meson light-cone wave function

nonperturbative input

$$\langle 0|\bar{q}(\lambda n)Y_{n}(\lambda,0)b(0)|\bar{B}\rangle = \int dk_{+}e^{-i\lambda k_{+}} \Big[\frac{1+i}{2}(\bar{n}\phi_{B}^{+}(k_{+})+i\phi_{B}^{-}(k_{+}))\gamma_{5}\Big]$$

0.4

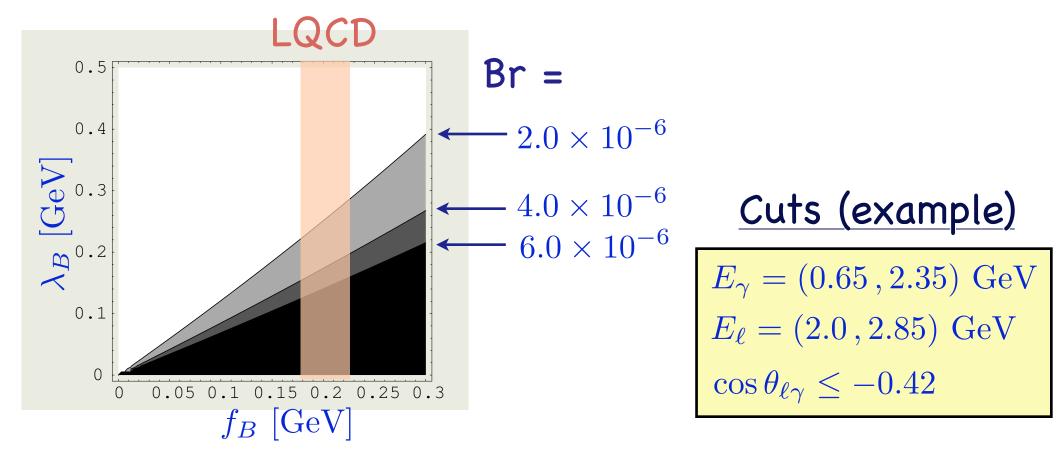
0.3

0.1

Predictions from factorization

The factorized amplitude depends (at LO in $\alpha_s(\sqrt{\Lambda Q})$) on hadronic B physics through $\frac{1}{\lambda_B} = \int dk_+ \frac{\phi_B^+(k_+)}{k_+}$

Clean determination of (f_B,λ_B) from the cut rate

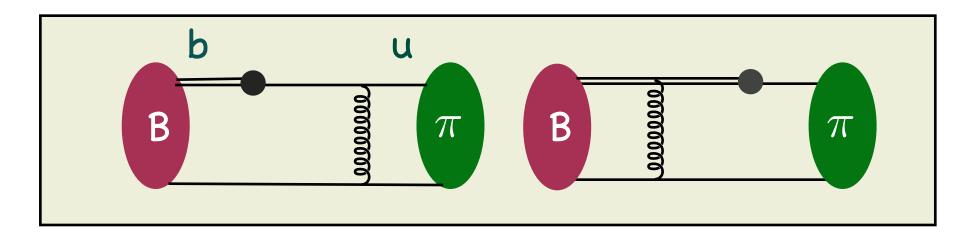


Decays into energetic light hadrons

Large recoil

Consider B semileptonic or rare decays into one energetic light particle

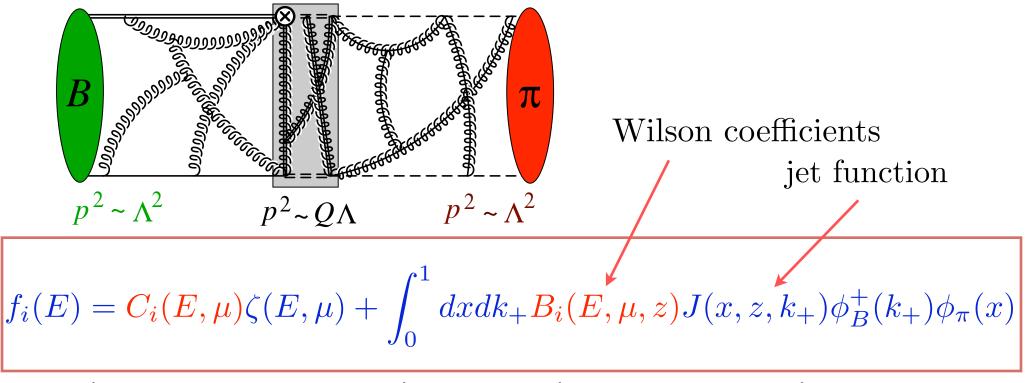
E.g.
$$B \to \pi \ell \bar{\nu}$$
 at q²=0 ($E_{\pi} \sim 2.2 \text{ GeV}$)



In the large recoil region, SCET gives a factorization relation for the $B\to\pi\,{\rm form}\,$ factors

Factorization for heavy-light form factors

Form factors contain soft and hard scattering terms



"nonfactorizable"

"factorizable"

Connection to nonleptonic decays

Nonleptonic B decays into light mesons

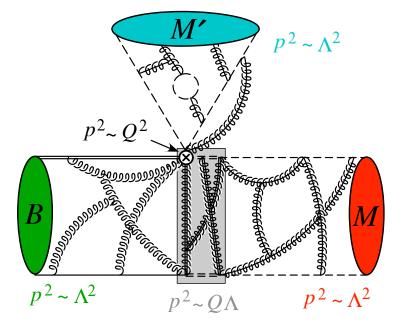
Energy scales in nonleptonic B -> MM' decays - same as those in B -> M

Factorization relation

$$A(B \to M_1 M_2) = f_{M_2} \zeta^{BM_1} \int_0^1 du T_2(u) \phi_{M_2}(u)$$

+ $\int_0^1 dz du T_{2J}(u, z) \zeta^{BM_1}_J(z) \phi_{M_2}(u) + (1 \leftrightarrow 2)$

Huge simplification: no new parameters needed! $\begin{array}{ll} \mbox{hard} & p^2 \sim Q^2 \\ \mbox{hard-collinear} & p^2 \sim Q\Lambda \\ \mbox{collinear} \\ \mbox{soft} \end{array} \right\} \ p^2 \sim \Lambda^2 \end{array}$



Other applications to B physics

- Inclusive semileptonic $B \to X_u \ell \bar{\nu}$ and radiative $B \to X_s \gamma$ decays: leading order in Λ/m_b and first power corrections
- Factorization and resummation for the cut inclusive rates, e.g. $B\to X_s\gamma$ with photon energy cut
- Factorization in exclusive B decays

– nonleptonic decays into final states with heavy mesons $B \to D^{(*)} \pi$

- color suppressed decays $\,B \to D^0 \pi^0$
- extension to multibody decays $B \to \pi \gamma \ell \nu$

 $B \to K \pi \gamma$

Applications to light quark physics

Deep inelastic scattering, DY near x->1

- Jet physics $e^+e^- \to \bar{q}q, \bar{q}qg, \cdots$ power corrections to jet shape variables
- Extension to unstable particles

Many more results...

 Semileptonic and radiative B decays into multibody states (one collinear + multiple soft pions)

e.g. $B \to \pi \pi \ell \bar{\nu} \quad B \to K_n \pi \ell^+ \ell^-$

- Corrections to the forward-backward asymmetry in $B \to K_n \pi \ell^+ \ell^-$

• Nonleptonic B decays into multibody final states

Larger branching ratios, more observables

Summary

- The strong interaction effects in hard processes can be described using the technique of effective field theories
- EFTs work by separating the contributions of the relevant energy scales: factorization theorems
- Heavy Quark Effective Theory (HQET): applicable to situations involving slow moving heavy hadrons
- Soft-Collinear Effective Theory (SCET): effective theory for soft and energetic quarks and gluons
- Rigorous factorization theorems for many hard processes, both at leading order and for power corrections.

<u>Heavy Quark Effective Theory</u>

Isgur, Wise, Phys.Lett.B237,527(1990) Isgur, Wise, Adv.Ser.Direct High Energy Phys.10,549(1992) Falk, Georgi, Grinstein, Wise, Nucl.Phys.B343,1(1990) Manohar,Wise, Heavy Quark Physics

Soft Collinear Effective Theory

Bauer, Fleming, Pirjol, Stewart, Phys.Rev.D63,114020(2001) Bauer, Pirjol, Stewart, Phys.Rev.D65,054022(2002) Beneke, Chapovski, Diehl, Feldmann, Nucl.Phys.B643,431(2002) Bauer, Pirjol, Stewart, Phys.Rev.D67,071502(2003) Beneke, Feldmann, Nucl.Phys.D685,249(2004)