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The weak and strong interactions of the SM contain 
many disparate scales

The good success of the SM -> low energy 
predictions must be insensitive to the high-

energy theory

ΛQCD
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Effective field theories

Effective theory approach:

•

•

identify small expansion parameters.

mu,d,s,c,b ! mW,Z,t

ΛQCD/mb,c ! 1
Heavy quark 

effective theory

Effective theory of 
weak interactions



Fermi 4-quark interaction
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Weak interactions
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Does this picture survive the introduction of radiative 
corrections?

C(µ/MW ) = Wilson coefficient containing the 
contributions of the hard loop momenta

W
+

b

c

d

u

b

c

d

u

Σi
Ci(

µ

MW

) × Oi

Can be computed in perturbation theory at 
any order in αs(MW ) Matching

Radiative corrections



Typical diagrams contributing to matching beyond 
tree level



leading order in power counting (dimension-6) 

Multiple operators Oi are induced in the low 

energy theory through radiative corrections
The complete set of operators contains the most 
general local operators satisfying the conditions:

have the correct transformation properties 
under the symmetries of the theory (parity, 
isospin, chirality) 

•

•

HW =
GF√

2
VcbV

∗

ud{C1(µ)[c̄γµPLb][d̄γµPLu] + C2(µ)(d̄γµPLb][c̄γµPLu]}

Complete effective weak Hamiltonian for             decaysb → cdū



〈OQCD〉 =
∑

i

Ci(
µ

mW

)〈Oi
eff〉 + O(

mq

mW

)

{

{ MW

µ
The effective theory operators reproduce the IR 
behaviour of the full theory (Standard Model)

Renormalization group evolution

µ
d

dµ
O = 0 µ

d

dµ
Ci(

µ

MW

) = −γji(αs)Cj(
µ

MW

)

The dependence on the hard scale
is fixed by renormalization group methods

MW

= anomalous dimension matrix of the operators γji(αs) Oi

power-suppressed 
terms

0



Leading log evolution for the b → cdū effective Hamiltonian 

O1 = (c̄b)V −A(d̄u)V −A

O2 = (c̄T a
b)V −A(d̄T

a
u)V −A

Operator basis

µ
d

dµ
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c1(µ)
c2(µ)

)

= −γT
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γ
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(
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c2(µ) = −
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αs(µ)
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)12/23
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αs(µ)
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−6/23

= 1.12

= −0.08

(µ = 4.2 GeV)
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Integrate out the top and 
W

HW =
GF√

2

∑

i

λ
(i)
CKM

Ci(µ)Oi

+ new physics 
contributions...

Tree operators

Penguin operators

O
u
1 = (ūb)V −A(d̄u)V −A

O
u
2 = (ūibj)V −A(d̄jui)V −A

O3−6 = (d̄b)V −A

∑

q

(q̄q)V ±A

O7−10 = (d̄b)V −A

∑

q

eq(q̄q)V ±A

Now known at NNLO 
Gorbahn, Haisch - hep-ph/0411071

Gorbahn, Haisch, Misiak - hep-ph/0504194

General electroweak Hamiltonian



µh

µ

µlow

In the presence of widely disparated scales µh ! µlow

the effects of loop momenta in this range can 
be accounted for using an effective theory

integrate out the degrees of freedom 
associated with the hard scale

Heff = ΣiCi(
µ

µh
)Oi + · · ·

µh

1.

matching at µ = µh gives Ci(1)2.

Solve the RGE for the Wilson coeffs3.

repeat as many times as necessary4.

Effective theories - summary



Effective theories for heavy 
quark physics



Heavy flavor decays

Bound states of b and light quarks b

Heaviest stable bound states in QCD 

(B−, B0, Bs)

(Λb,Ξ
−

b
,Ξ0

b)

mesons 
baryons 

Rich spectrum, many decay channels 

Important source of information about CP 
violation, CKM parameters, new physics

•

•

•

•

•

•

(≥ 5.28 GeV)



CKM matrix
W

Vij





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 !





0.975 0.221 0.003

0.221 0.975 0.040

0.005 0.040 1.000





Parameterizes the strength of the charged weak couplings 
in the Standard model

u
i

d
i

Experimental information about the smallest entries can be 
summarized by the unitarity relation

V
∗

ubVud + V
∗

cbVcd + V
∗

tbVtd = 0

0 1

V
∗

ubVud V
∗

tbVtdα

βγUnitarity triangle



Constraining the CKM triangle with B decays 



B → π"ν̄Weak semileptonic decays

Mediated by the heavy-to-light current
Γµ = ūγµPLb

B π

b u
Vub

•

〈π(p′)|ūγµPLb|B̄(p)〉 = f+(q2)(p + p′)µ + f−(q2)(p − p′)µ

Parameterized by two form factors•

f±(q2) depend on hadronic dynamics (QCD)



Nonleptonic B decays

W

’’Tree’’ ’’Penguin’’

g
t

b u b d

!

!

B B

Kinematics

B
ππ

Examples: B
0
→ π

+
π
−

B
0
→ K

+
π
−

pπ ∼ mB/2 ∼ 2.6 GeV ! ΛQCD

,



Weak interactions of quarks take place inside hadrons -> need to 
account for strong interaction nonperturbative effects 

Controlling these effects is a central part of SM physics 
Lattice QCD 

Exploit symmetries 
of QCD:    

Factorization theorems of hard QCD 

•

•

•

chiral symmetry 

heavy quark symmetry 

•

•

•

flavor SU(3) 

Effective field 
theories 

Recent progress from Soft-Collinear Effective Theory 

〈M1M2|HEW |B̄〉 =?

Strong interaction effects



Energy scales in B physics
Heavy quarks interacting with soft quarks and 
gluons 

Relevant energy scales: Λ ∼ 500 MeV , mb ∼ 4.6 GeV

1. Small expansion parameter
2. Symmetries at leading order in

HQET = the appropriate effective theory

Λ/mb ∼ 0.1

Λ/mb



Scales in HQET
Heavy quark interacting with soft gluon fields

Modes k

Hard
Soft

Fields
mb

Λ

_

hv
q

The quark momentum contains 
a large fixed component

p = mbv + k
Q

}

Label

A
a

µ

Q(x) = e−imQv.xh(x)

Residual 
momentum



HQET for a static quark
Take the heavy quark mass to infinity -> static limit
The heavy quark acts like a fixed source of color field

p = mbv + k

Propagator S(p) = i
p/ + mb

p2
− m2

b

S(p) = i
mbv/ + k/ + mb

(mbv + k)2 − m2

b

=
i

v ·k

1 + v/

2
+ O(k/mb)

The heavy quark mass has disappeared!

This is the propagator corresponding to the Lagrangian 

L = h̄v ·iDh Leading order HQET Lagrangian  



HQET Lagrangian

L = Q̄(iD/ − mQ)Q

Split the heavy quark field Q into ‘large’ and ‘small’ 
components with respect to velocity v

Q(x) = e−imQv.xe
1

2mQ
O

A
1 e

1

2m2

Q

O
A
2

· · ·h(+)

+ e
imQv.x

e
1

2mQ
O

A
1
e

1

2m2

Q

O
A
2

· · ·h
(−)

Apply a sequence of field transformations which 
decouples them - Foldy-Wouthuysen transformation

v/h(±)
= ±h(±)Q(x) = e−imQv.xh(+) + eimQv.xh(−)

→ LHQET [h(+)] + LHQET [h(−)]



HQET at first subleading order OA
1 = iD/⊥ = i(D/ − v/v.D)

LHQET = h̄iv.Dh +
1

2mQ
h̄(iD)2h −

g

4mQ
h̄σµνGµνh + · · ·

}

} }

Leading order 
Lagrangian

Symmetry-breaking 
terms

Including radiative corrections 

Wilson coefficient soft matrix element

Example: heavy-to-light current

〈0|q̄γµγ5b|B̄〉 = C
( µ

mb

)

〈0|q̄γµγ5bv|B̄v〉
}

}

+O(Λ/mb)



HQET - symmetries

Flavor symmetry: the physics is independent 
on the heavy flavor: b vs. c

Spin symmetry: the heavy quark spin orientation is 
irrelevant

b c b



HQET - formalism
The heavy mesons        
form a spin doublet

D,D∗

j! =
1

2

−

→ JP
= 0

−, 1−

Combine them 
into a superfield Ha

=
1 + v/

2

[

Da∗

µ γµ
− Daγ5

]

Transforms as: H
a
→ SH

a

H
a
→ UabH

b

under spin symmetry
under flavor symm.

Construct operators using only H having the same 
transformation properties as the original QCD 
operators  



Semileptonic decays B̄ → D
(∗)

!ν̄!

Strong interaction effects - hadronic matrix elements 

〈D(∗)(v′)|c̄Γb|B̄(v)〉

〈D(∗)(v′)|c̄Γb|B̄(v)〉 = ξ(v ·v′)Tr [H̄(c)
v′ ΓH(b)

v ] + O
( Λ

mc

)

Heavy quark symmetry prediction: 

reduced matrix element 
= Isgur-Wise function 

1 (B->D) + 4 (B->D*) = 5 form factors fixed in terms of 
just one IW function

⇒ |Vcb|

Example: heavy-to-heavy decays



Energetic hadrons
Construct a heavy-quark expansion for processes 
involving both soft and energetic light hadrons

Example:  B → π"ν̄ decay at large recoilsemileptonic

Eπ ∼ 2.2 GeVB
πe

ν̄

Energy scales:
- Soft

- Hard

- Hard-collinear

Λ ∼ 500 MeV

mb ∼ 4.6 GeV

√

mbΛ ∼ 1.4 GeV



The soft-collinear effective theory 
(SCET)

Systematic power counting in       implemented 
at the level of momenta, fields, operators
Construct effective Lagrangians for strong and 
weak interactions expanded in 

Guiding principles: new symmetries - soft/
collinear gauge invariance, reparameterization 
invariance
Nonlocal operators and Lagrangians

•

•

•

•

Λ/mb

Λ/mb



Soft-Collinear Effective Theory
(formalism)

Collinear gauge invariance

Power counting 

Formal derivation of the SCET Lagrangian

Introducing the relevant modes

General procedure for constructing operators

•

•

•

•

•



Light-cone geography

Light cone coordinates (x0
, x

1
, x

2
, x

3) → (x+, x−, x⊥)

x± = x
0
± x

3
x⊥ = (x1

, x
2)

Light cone unit vectors
n

µ = (1, 0, 0, 1)
n̄

µ = (1, 0, 0,−1)
vector projection

n · n = 0

n̄ · n̄ = 0

n · n̄ = 2

xµ =
1

2
n · xn̄µ +

1

2
n̄ · xnµ + x

⊥
µ

=
1

2
x+n̄µ +

1

2
x−nµ + x

⊥
µ

,



SCET - Modes
Energetic quarks and leptons -> 
collinear modes

B D

π

Include also soft quarks and gluons with momenta

pc = (p+, p−, p⊥) ∼ (
Λ2

Q
,Q,Λ) = Q(λ2, 1,λ)

ps = (p+, p−, p⊥) ∼ (Λ,Λ,Λ) = Q(λ,λ,λ)

Construct the effective theory as an expansion in λ2
=

Λ

Q



Fields and momentum scaling

modes field pµ ∼ (+,−,⊥)

hard
hard-collinear

collinear
soft/ultrasoft

An,q, ξn,p

An,q, ξn,p

As, q, bv

(Q, Q, Q)

(Λ, Q,
√

QΛ)

(Λ2/Q, Q,Λ)

(Λ,Λ,Λ)

Introduce quark and gluon fields for each relevant 
region of loop momenta

p
2

Q2

ΛQ

Λ
2

Λ
2

Can be perturbative/nonperturbative, depending 
on their virtuality



Power counting
Assign a power counting in   to the effective theory 
fields such that the leading action is  

λ

O(λ0)

λ2
=

Λ

Q

LSCET = ξ̄n,p

n̄/

2

[

in·Dus + gn·An,q + (p/⊥ + iD/⊥)
1

n̄·p + n̄·iD
(p/⊥ + iD/⊥)

]

ξn,p

x⊥ ∼ λ
−1

x+ ∼ λ
0

x
−
∼ λ

−2

LO NLO

S = i

∫
d
4
xL(x) ∼ λ

−4
× (λ4 + λ

5 + · · ·)

Redefine the collinear gluon field to make explicit 
all collinear momenta

A
aµ(x) = e

−iq·x
A

aµ
n,q(x)

Covariant derivatives can act on the collinear gluon 
fields, producing large factors ~ Q.

λ
2 λ

λ
0 λ?

?
? ?



The SCET Lagrangian

LSCET = L
(0)

+ L
(1)

+ · · ·

L
(0) typical vertices:

L
(1) allows also soft-collinear vertices, e.g.

c

s

c

c

cc c c

s

gnµ

n̄/

2
T a

c c

s
cc

γ
µ

⊥ c s
γ

µ

⊥

L
(1)
qξ



Soft-collinear factorization



These couplings can be absorbed to all orders into 
field redefinitions

Ultrasoft gluons have eikonal couplings to the 
collinear quarks and gluons at leading order in SCET.

p p

b, ! c, "

a, µ

q2q1
−ignµT a

gfabcnµn̄·q

ξn = Y [n·Aus]ξ
(0)
n

A
µ

n = Y [n·Aus]A
(0)µ
n Y

†[n·Aus]

where
p

µ1 , a1 µ2, a2 µn, an

k1 k2 kn

Y [n·Aus] =



Y (x) = P exp
(

ig

∫

x

−∞

dλn·Aus(λn)
)

Y[n.A] is a Wilson line of the ultrasoft gluon field

Mathematical 
identity

nµ
∂

∂xµ

[

exp
(

∫ x

−∞

dλf(λn)
)]

= f(x)

n·iDusY (x) = (n·i∂ + gn·Aus)Y (x) = 0

Y[n.A] satisfies the equation of motion⇒

The leading order SCET Lagrangian becomes⇒

L
(0)

= ξ̄n,p

n̄/

2

[

in·Dus + gn·An,q + iD/⊥
1

n̄·iD
iD/⊥

]

ξn,p

= ξ̄(0)
n,p

n̄/

2

[

in·∂ + gn·A(0)
n,q

+ iD/(0)
⊥

1

n̄·iD(0)
iD/(0)

⊥

]

ξ(0)
n,p



General result

⇒

L[ξn, Aµ

n, Aµ

us] = L[ξ(0)
n , A(0)µ

n , 0]

The field redefinition removes all ultrasoft gluon 
couplings from the Lagrangian (at leading order)
and shifts them into operators (currents, etc.)

Simplifies all-orders factorization proofs

Example: heavy-light current

J (ω) = [ξ̄nW ]ωΓbv
= [ξ̄(0)

n
W (0)Y †

n
[n·Aus]]ωΓbv



Application 

Factorization in radiative leptonic B decays



Factorization in B → γ"ν̄

W

B

γ

B ⊗

QCD SCETII

Simplest B decay, mediated by the b->u weak current

In the kinematic region w/ a hard photon Eγ ! ΛQCD

this amplitude can be described in factorization



Kinematics B → γ"ν̄

Dalitz plot x = 1 −

2Eγ

mB

y =
2Ee

mB

y

x1

1

0

Validity region of the factorization relation:

Eγ ! ΛQCD ∼ 500 MeV 1 − x " 0.2



Factorization relation

A(B → γ"ν̄) ∼ C(v)(Eγ , µ)

∫
∞

0
dk+J(k+)φ+

B(k+)

Wilson coefficient: contains physics effects from 
the hard scale

•

C(Eγ , µ) = 1 −

αsCF

4π

[

2 log2 2Eγ

µ
− 5 log

2Eγ

µ
+ · · ·

]

b

u

C(Eγ , µ)×

µ = Q ≡ 2Eγ ∼ mb



Jet function:

J(k+) =
1

k+

(1 +
αsCF

4π
f(Eγk+/µ2))

〈0|q̄(λn)Yn(λ, 0)b(0)|B̄〉 =

∫

dk+e−iλk+

[1 + v/

2
(n̄/φ+

B
(k+) + n/φ−

B
(k+))γ5

]

•

B meson light-cone 
wave function

•

nonperturbative input k+ [GeV]

0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5 φ+

B
(k+)

k+ [GeV]



Predictions from factorization 

Clean determination of (fB , λB)

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

0.3

0.4

0.5

λ
B

[G
eV

]

fB [GeV]

6.0 × 10
−6

4.0 × 10
−6

2.0 × 10
−6

from the cut rate

Eγ = (0.65 , 2.35) GeV

E! = (2.0 , 2.85) GeV

cos θ!γ ≤ −0.42

Cuts (example)

The factorized amplitude depends (at LO in         ) 
on hadronic B physics through 1

λB

=

∫
dk+

φ+

B
(k+)

k+

αs(
√

ΛQ)

Br =
LQCD



Decays into energetic
light hadrons



B π πB

Consider B semileptonic or rare decays into one 
energetic light particle

Large recoil

E.g. B → π"ν̄ at q2=0 (Eπ ∼ 2.2 GeV)

b u

In the large recoil region, SCET gives a 
factorization relation for the        form factors B → π



Factorization for heavy-light form 
factors

Form factors contain soft and hard scattering terms

“nonfactorizable” “factorizable”

B π

Λ~p 22
Λ~p 22

Λ~p2 Q

fi(E) = Ci(E, µ)ζ(E, µ) +

∫ 1

0

dxdk+Bi(E, µ, z)J(x, z, k+)φ+
B

(k+)φπ(x)

jet function

Wilson coefficients



Connection to nonleptonic 
decays



Nonleptonic B decays into light 
mesons

Energy scales in nonleptonic B -> MM’ 
decays - same as those in B -> M

Factorization relation

B M

Λ~�p 22
Λ~

�p 22
Λ~�p2 Q

�~
�p2 Q2

�
Λ~�p 22M’

soft 

hard 
hard-collinear 
collinear 

p2
∼ Q2

p2
∼ QΛ

p
2
∼ Λ

2}

A(B → M1M2) = fM2
ζBM1

∫ 1

0

duT2(u)φM2
(u)

+

∫ 1

0

dzduT2J (u, z)ζBM1

J
(z)φM2

(u) + (1 ↔ 2)

Huge simplification:
no new parameters needed!



Other applications to B physics
Inclusive semileptonic             and radiative• B → Xu!ν̄ B → Xsγ

decays: leading order in    Λ/mb and first power corrections   

Factorization in exclusive B decays•

- nonleptonic decays into final states with 
heavy mesons

- extension to multibody decays

B → D
(∗)

π

- color suppressed decays B → D
0
π

0

B → πγ#ν

B → Kπγ

Factorization and resummation for the cut inclusive 
rates, e.g.           with photon energy cut

•

B → Xsγ



Applications to light quark physics

Deep inelastic scattering, DY near x->1  •

Jet physics   • e
+
e
−

→ q̄q, q̄qg, · · ·

power corrections to jet shape variables

Extension to unstable particles   •



Many more results...

Semileptonic and radiative B decays into multibody states 
(one collinear + multiple soft pions)

e.g.

Larger branching ratios, more observables 

Corrections to the forward-backward asymmetry in 

•

•

B → ππ"ν̄ B → Knπ"
+
"
−

B → Knπ"
+
"
−

Nonleptonic B decays into multibody final states •



The strong interaction effects in hard processes can be 
described using the technique of effective field theories 

•

EFTs work by separating the contributions of the relevant energy 
scales: factorization theorems

•

Rigorous factorization theorems for many hard processes, both 
at leading order and for power corrections. 

•

Summary

Heavy Quark Effective Theory (HQET): applicable to situations 
involving slow moving heavy hadrons

Soft-Collinear Effective Theory (SCET): effective theory for 
soft and energetic quarks and gluons

•

•
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