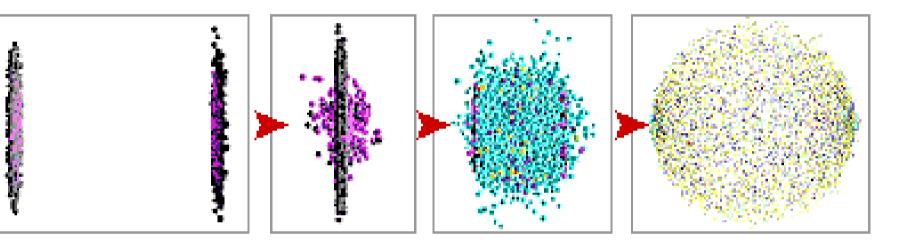
High energy scattering: from weak to strong coupling

Edmond lancu Institut de Physique Théorique de Saclay

The Little Bang

Motivation

- Asymptotic freedom
- High-energy QCD
- RHIC
- Space-time picture
- Phases of QCD
- Lattice QCD
- Jets in AA
- Elliptic flow
- Viscosity/entropy


Partons and jets in pQCD

Partons and jets in AdS/CFT

Conclusions

Backup

Ultrarelativistic heavy ion collisions @ RHIC and LHC

An invitation to study high—energy scattering in QCD at both weak and strong coupling

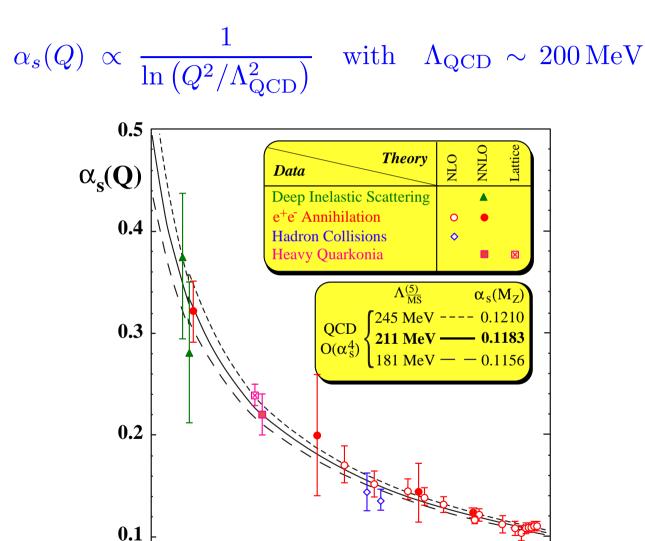
Asymptotic freedom

1

QCD is weakly coupled at short distances or high density

Motivation

 Asymptotic freedom
--


- High-energy QCD
- RHIC
- Space-time picture
- Phases of QCD
- Lattice QCD
- Jets in AA
- Elliptic flow
- Viscosity/entropy

Partons and jets in pQCD

Partons and jets in AdS/CFT

Conclusions

Backup

10

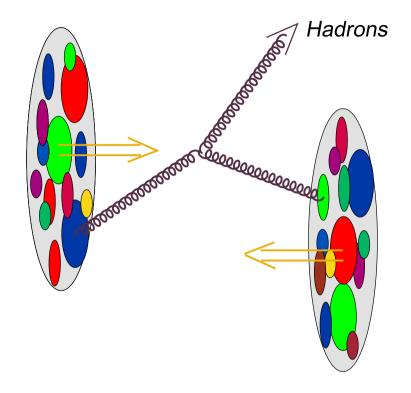
Q [GeV]

100

Early stages of a high-energy collision

Highly energetic, strongly Lorentz contracted, nuclei: $\gamma \sim 100$

Motivation


- Asymptotic freedom
- High–energy QCD
- RHIC
- Space-time picture
- Phases of QCD
- Lattice QCD
- Jets in AA
- Elliptic flow
- Viscosity/entropy

Partons and jets in pQCD

Partons and jets in AdS/CFT

Conclusions

Backup

- RHIC: Au–Au collision at 200 GeV/nucleon pair
- ◆ LHC: 5.5 TeV/nucleon pair in Au–Au and 14 TeV in p–p

At high energy, hadron wavefunctions are very dense !

Gluon evolution

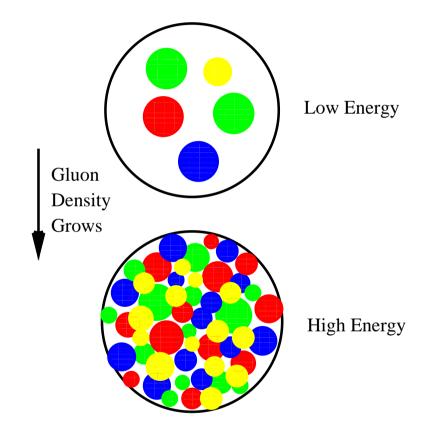
Gluon distribution grows very fast with increasing energy

Motivation

Asymptotic freedom

High–energy QCD

● RHIC


- Space-time picture
- Phases of QCD
- Lattice QCD
- Jets in AA
- Elliptic flow
- Viscosity/entropy

Partons and jets in pQCD

Partons and jets in AdS/CFT

Conclusions

Backup

A head–on vue of a hadron

Being dense, the gluonic matter is weakly coupled ! Color Glass Condensate

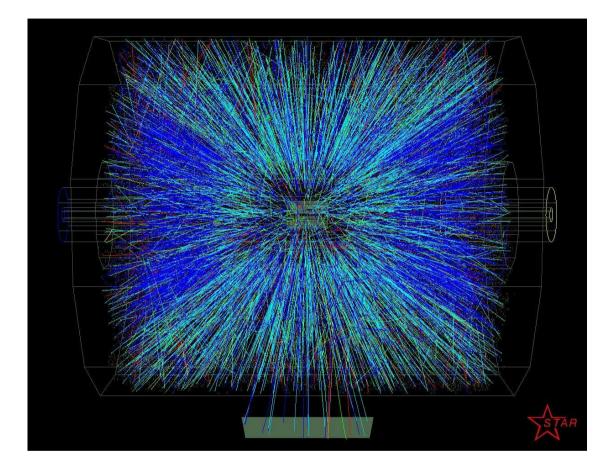
Partons at RHIC

Asymptotic freedom

(A)

High-energy QCD

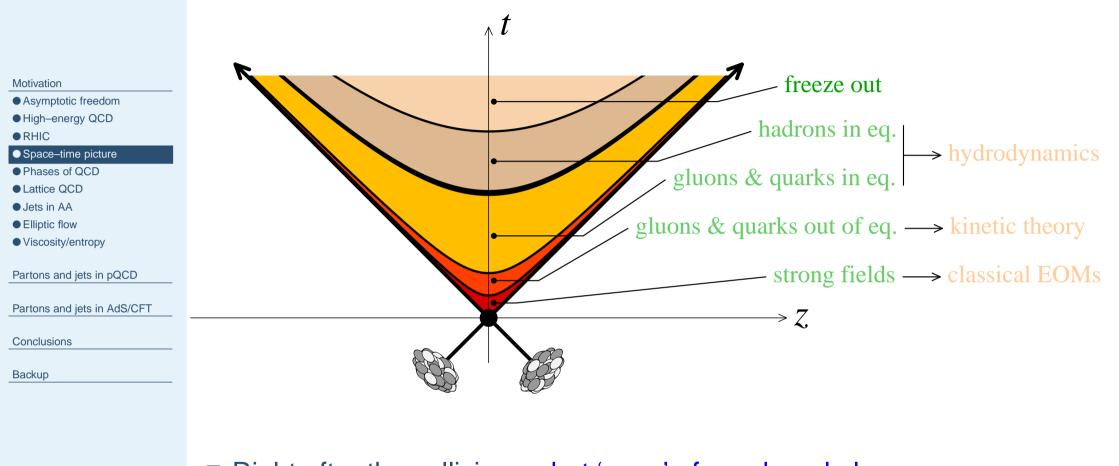
● RHIC


- Space-time picture
- Phases of QCD
- Lattice QCD
- Jets in AA
- Elliptic flow
- Viscosity/entropy

Partons and jets in pQCD

Partons and jets in AdS/CFT

Conclusions


Backup

Partons are actually 'seen' (liberated) in AA collisions

- $\bullet \sim 3000$ hadrons in the final state vs. 400 nucleons in AA
- most of them arise as hadronized partons

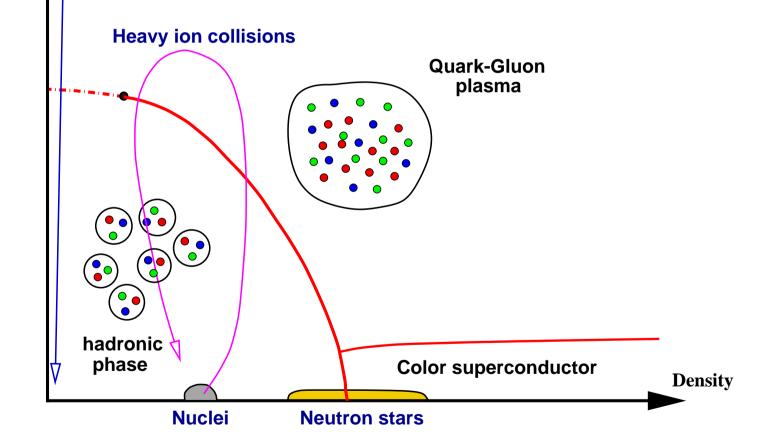
The stages of a heavy ion collision

- Right after the collision: a hot 'soup' of quark and gluons
- Later times: the matter expands and becomes more dilute
- Thermal phase at intermediate times: Quark Gluon Plasma

Phases of QCD

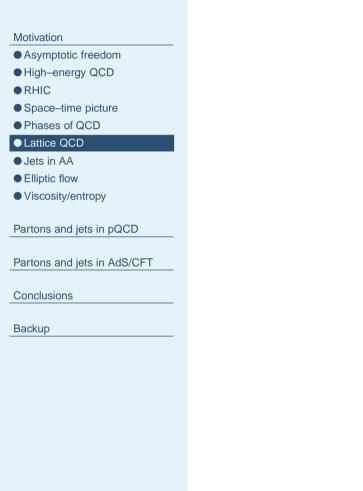
- Asymptotic freedom
- High–energy QCD
- RHIC
- Space-time picture
- Phases of QCD
- Lattice QCD
- Jets in AA
- Elliptic flow
- Viscosity/entropy

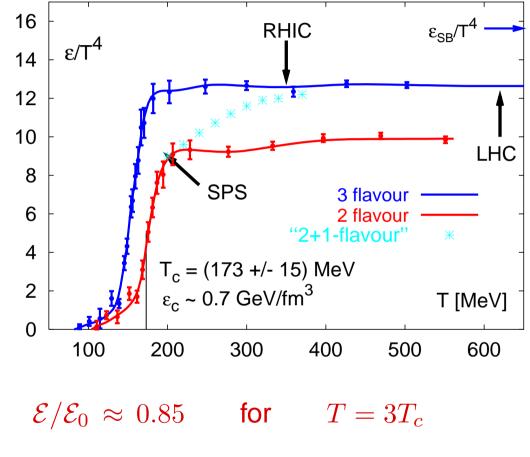
Partons and jets in pQCD


Partons and jets in AdS/CFT

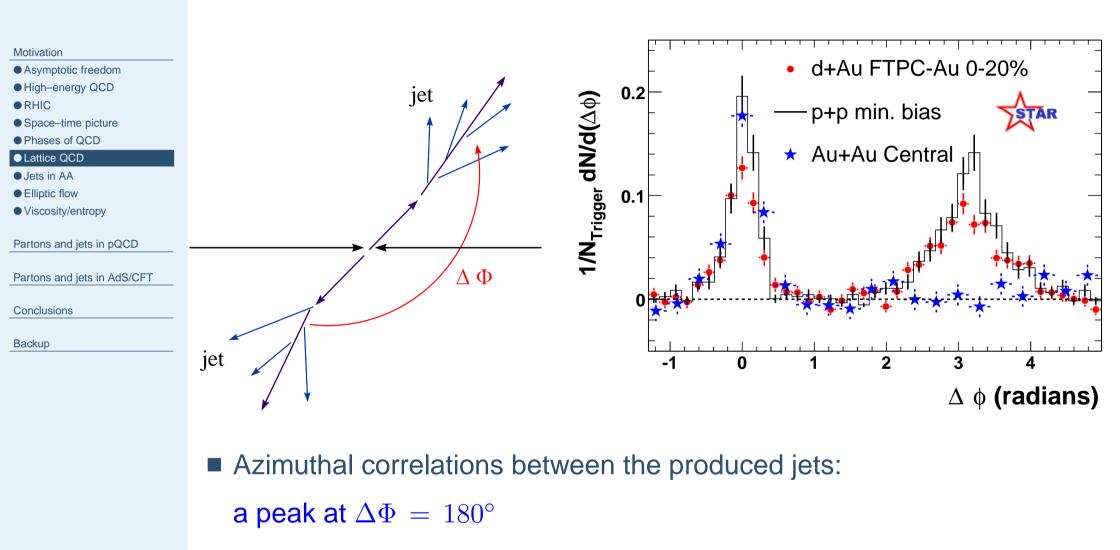
Conclusions

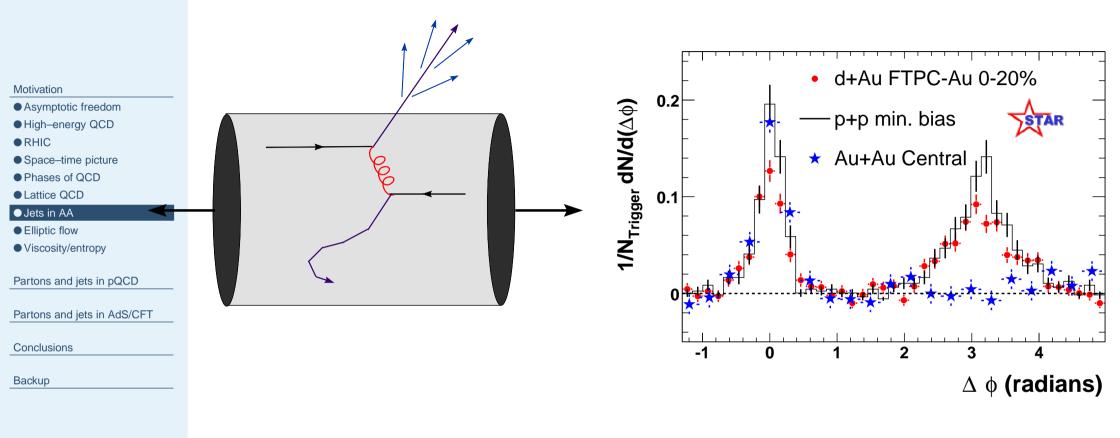
Backup


Temperature


Expansion of the early Universe

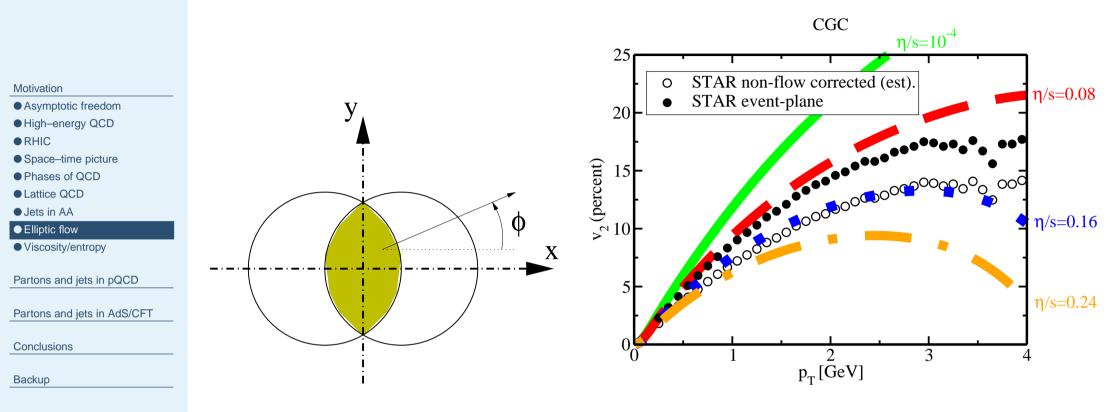
Heating QCD : Lattice results





Is this deviation from ideal gas small? Or is it large?
AdS/CFT: $\mathcal{E}/\mathcal{E}_0 \rightarrow 3/4$ when $\lambda \rightarrow \infty$ ($\mathcal{N} = 4$ SYM)

Jets in proton–proton collisions



Nucleus-nucleus collision: Jet quenching

- The "away–side" jet has disappeared ! absorbtion (or energy loss, or "jet quenching") in the medium
- The matter produced in a heavy ion collision is opaque high density, strong interactions, ... or both

Elliptic flow at RHIC: The perfect fluid

Non-central AA collision: Pressure gradient is larger along x

 $\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2v_2 \cos 2\phi, \qquad v_2 = \text{"elliptic flow"}$

Well described by hydrodynamical calculations with very small viscosity/entropy ratio: "perfect fluid"

Viscosity over entropy density ratio

■ Viscosity/entropy density ratio at RHIC (in units of ħ)

- Motivation
- Asymptotic freedom
- High–energy QCD
- RHIC
- Space-time picture
- Phases of QCD
- Lattice QCD
- Jets in AA
- Elliptic flow
- Viscosity/entropy

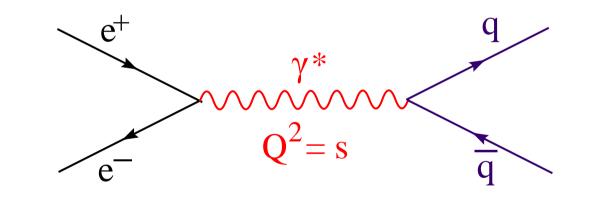
```
Partons and jets in pQCD
```

```
Partons and jets in AdS/CFT
```

Conclusions

Backup

- $\frac{\eta}{s} = 0.1 \pm 0.1$ (theor) ± 0.08 (exp) [\hbar]
- This ratio is **small** when the coupling is **strong** !
- Kinetic theory: viscosity is due to collisions among molecules
 - $\eta \sim \rho v \ell = \text{mass density} \times \text{velocity} \times \text{mean free path}$
- Conjecture (from AdS/CFT) : [Kovtun, Son, Starinets, 2003]


 $\frac{\eta}{s} \ge \frac{\hbar}{4\pi}$ [lower limit = infinite coupling]

• The RHIC value is at most a few times $\hbar/4\pi$!

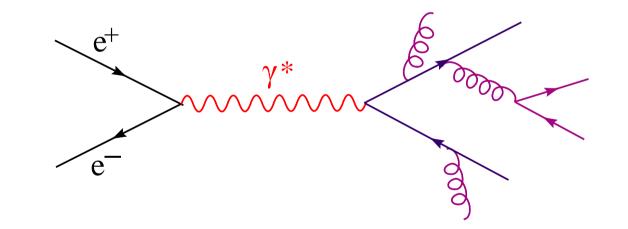
e^+e^- annihilation: Jets in pQCD

- How would a high-energy jet interact in a strongly coupled plasma?
 - How to produce jets in the first place ?
 - Guidance from perturbative QCD: $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$

• Decay of a time-like photon: $Q^2 \equiv q^{\mu}q_{\mu} = s > 0$

Partons and jets in pQCD

- ●e+e-Bremsstrahlung
- Jets
- 3-jet
- Optical theorem
- Current correlator
- DIS
- F2
- Parton evolution
- Gluons at HERA
- Gluons at RHIC
- Saturation momentum


Partons and jets in AdS/CFT

Conclusions

e^+e^- annihilation: Jets in pQCD

- How would a high—energy jet interact in a strongly coupled plasma ?
 - How to produce jets in the first place ?
 - Guidance from perturbative QCD: $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$

The structure of the final state is determined by
 parton branching & hadronisation

Motivation

Partons and jets in pQCD

- e+e-● Bremsstrahlung
- Jets
- 3-jet
- Optical theorem
- Current correlator
- DIS
- F2
- Parton evolution
- Gluons at HERA
- Gluons at RHIC
- Saturation momentum

Partons and jets in AdS/CFT

Conclusions

Bremsstrahlung

 P_{7}

Gluon emission to lowest order in perturbative QCD:

Motivation

Partons and jets in pQCD

- •e+e-
- Bremsstrahlung
- Jets
- 3-jet
- Optical theorem
- Current correlator
- DIS
- F2
- Parton evolution
- Gluons at HERA
- Gluons at RHIC
- Saturation momentum

Partons and jets in AdS/CFT

Conclusions

Backup

 $(1-x) P_{z} , -k_{\perp}$ $k_{z} = x P_{z} , k_{\perp}$ $d\mathcal{P}_{\text{Brem}} \sim \alpha_{s}(k_{\perp}^{2}) N_{c} \frac{d^{2}k_{\perp}}{k_{\perp}^{2}} \frac{dx}{x}$

Phase-space enhancement for the emission of

- collinear $(k_{\perp} \rightarrow 0)$
- and/or soft $(x \rightarrow 0)$ gluons
- Parton lifetime (or 'gluon formation time') : $\Delta t \sim \frac{k_z}{k_\perp^2}$

Jets in perturbative QCD

Motivation

Partons and jets in pQCD


(A)

- •e+e-
- Bremsstrahlung
- Jets
- 3-jet
- Optical theorem
- Current correlator
- DIS
- F2
- Parton evolution
- Gluons at HERA
- Gluons at RHIC
- Saturation momentum

Partons and jets in AdS/CFT

Conclusions

Backup

- Few, well collimated, jets
- e^+e^- cross-section computable in perturbation theory

$$\sigma(s) = \sigma_{\text{QED}} \times \left(3\sum_{f} e_{f}^{2}\right) \left(1 + \frac{\alpha_{s}(s)}{\pi} + \mathcal{O}(\alpha_{s}^{2}(s))\right)$$

 $\sigma_{\rm QED}$: cross-section for $e^+e^- \rightarrow \mu^+\mu^-$

• Multi-jet ($n \ge 3$) events appear, but are comparatively rare

3-jet event at OPAL (CERN)

Motivation

Partons and jets in pQCD

œ

- •e+e-
- Bremsstrahlung

Jets

● 3-jet

Optical theorem

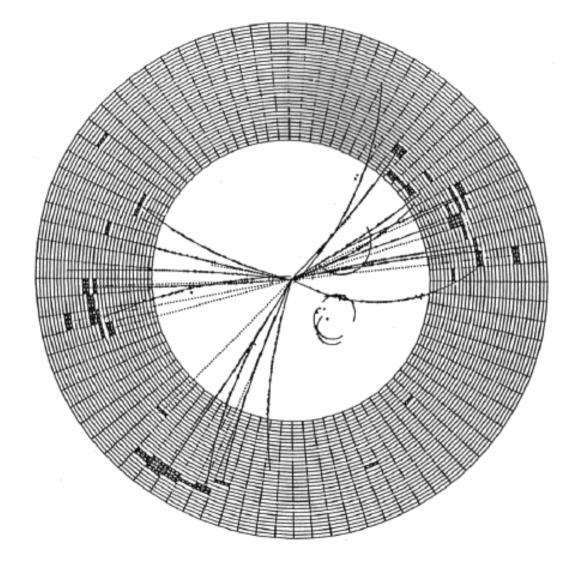
Current correlator

• DIS

• F2

Parton evolution

Gluons at HERA


Gluons at RHIC

Saturation momentum

Partons and jets in AdS/CFT

Conclusions

Backup

HAN SUMS (GEV) HAN PTOT 35,768 PTRANS 29,964 PLONG 15,700 CHARGE -2 TOTAL CLUSTER ENERGY 15,169 PHOTON ENERGY 4,893 NR OF PHOTONS 11

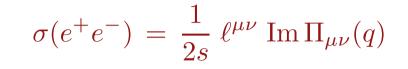
x d 2

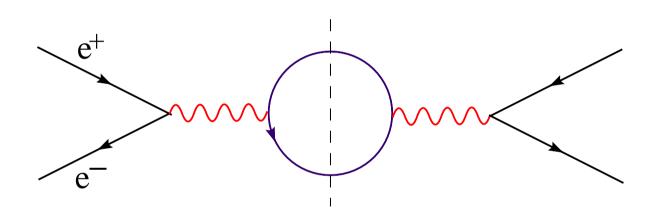
Optical theorem

Total cross-section given by the optical theorem

Motivation

- Partons and jets in pQCD
- •e+e-
- Bremsstrahlung
- Jets
- 3-jet

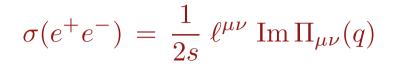

Optical theorem

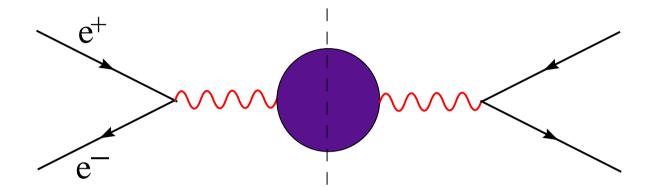

- Current correlator
- DIS
- F2
- Parton evolution
- Gluons at HERA
- Gluons at RHIC
- Saturation momentum

Partons and jets in AdS/CFT

Conclusions

Backup





The quark loop: The vacuum polarization tensor $\Pi_{\mu\nu}$ for a time–like photon (here, evaluated at one–loop order)

This can be generalized to all-orders

Current–current correlator

• $\Pi_{\mu\nu}$ = current–current correlator to all orders in QCD

$$\Pi_{\mu\nu}(q) \equiv i \int \mathrm{d}^4 x \,\mathrm{e}^{-iq \cdot x} \left\langle 0 \left| \mathrm{T} \left\{ J_{\mu}(x) J_{\nu}(0) \right\} \right| 0 \right\rangle$$

 $J^{\mu} = \sum_{f} e_{f} \, \bar{q}_{f} \, \gamma^{\mu} \, q_{f} \, : \, \text{quark electromagnetic current}$

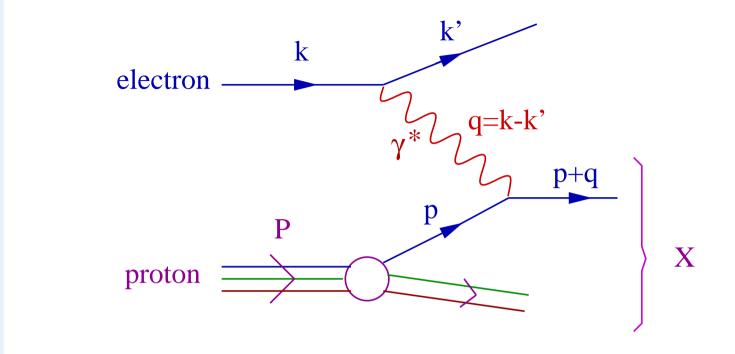
• Valid to leading order in α_{em} but all orders in α_s

Motivation

Partons and jets in pQCD

(A)

- •e+e-
- Bremsstrahlung
- Jets
- 3-jet
- Optical theorem


Current correlator

- DIS
- F2
- Parton evolution
- Gluons at HERA
- Gluons at RHIC
- Saturation momentum

```
Partons and jets in AdS/CFT
```

```
Conclusions
```

Deep inelastic scattering

Motivation

Partons and jets in pQCD

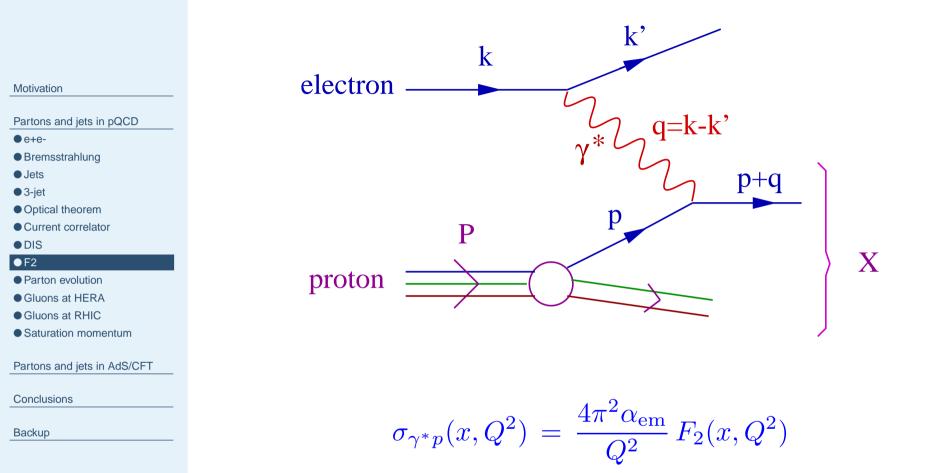
•e+e-

Bremsstrahlung

Jets

- 3-jet
- Optical theorem
- Current correlator

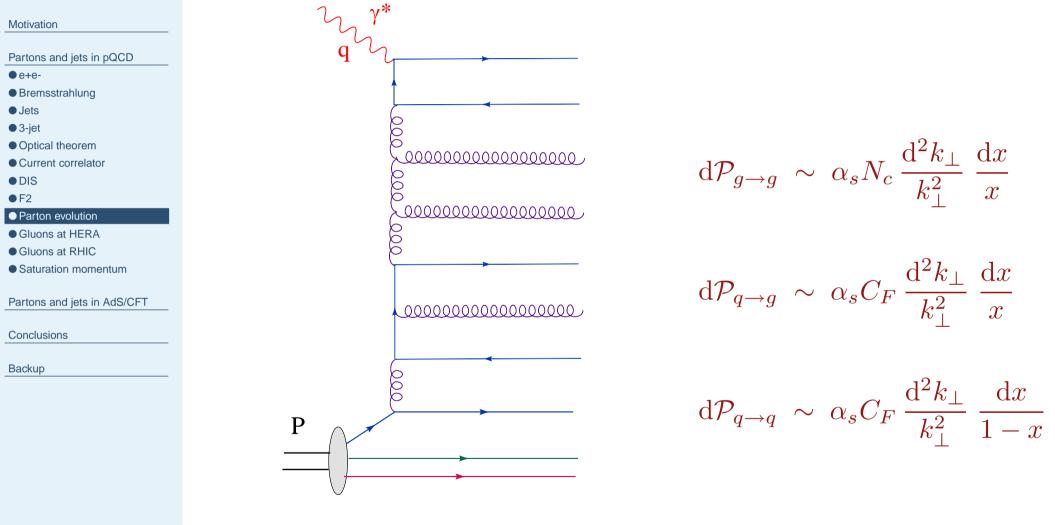
• DIS


- F2
- Parton evolution
- Gluons at HERA
- Gluons at RHIC
- Saturation momentum

Partons and jets in AdS/CFT

Conclusions

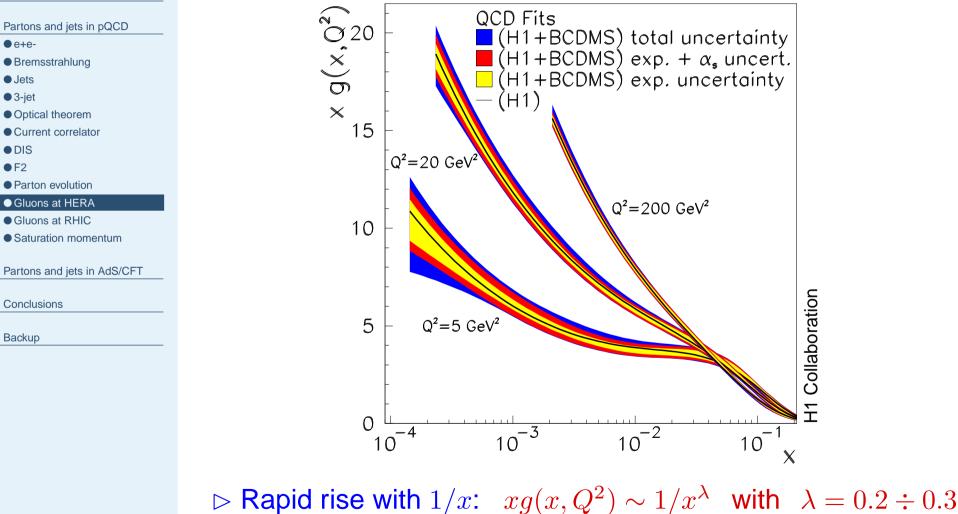
- Space-like current: $Q^2 \equiv -q^{\mu}q_{\mu} \geq 0$ and $x \equiv \frac{Q^2}{2P \cdot q}$
- **Physical picture:** γ^* absorbed by a quark excitation with
 - transverse size $\Delta x_{\perp} \sim 1/Q$
 - and longitudinal momentum $p_z = xP$


The proton structure function

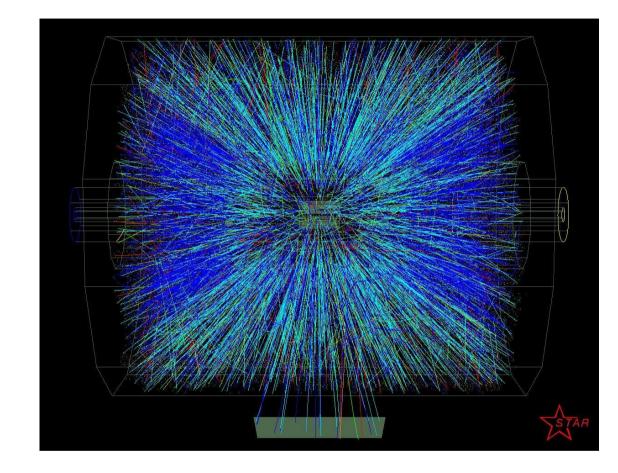
• $F_2(x, Q^2)$: 'quark distribution' = number of quarks with longitudinal momentum fraction x and transverse area $1/Q^2$

Parton evolution in pQCD

Gluons are implicitly seen in DIS, via parton evolution



Bremsstrahlung favors the emission of gluons with $x \ll 1$


Gluons at HERA

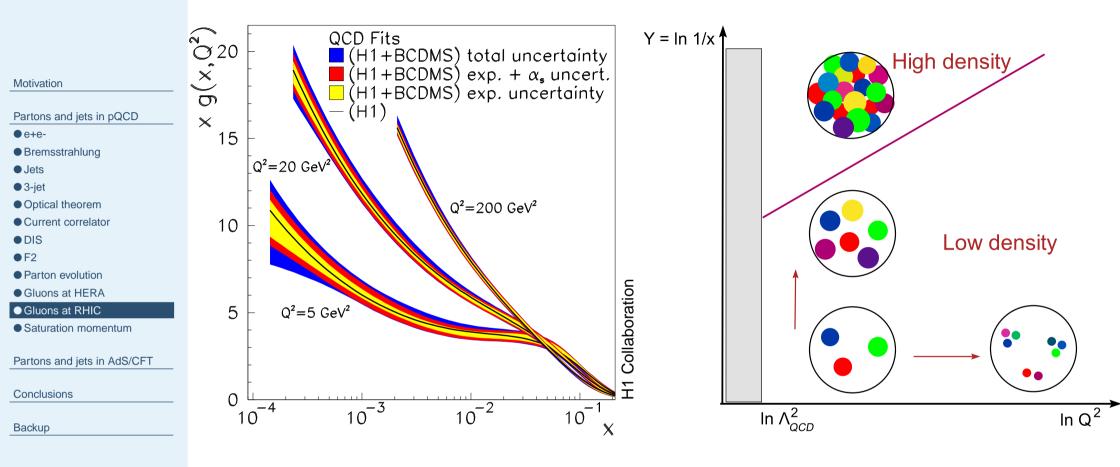
 $xg(x,Q^2) = #$ of gluons with transverse area $\sim 1/Q^2$ and $k_z = xP$

Motivation

Partons at RHIC

- Motivation
- Partons and jets in pQCD

(A)


- •e+e-
- Bremsstrahlung
- Jets
- 3-jet
- Optical theorem
- Current correlator
- DIS
- F2
- Parton evolution
- Gluons at HERA
- Gluons at RHIC
- Saturation momentum

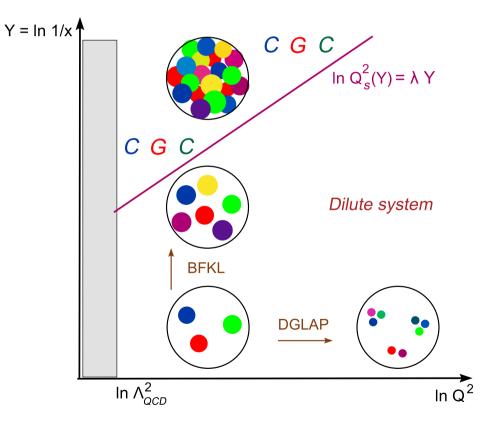
Partons and jets in AdS/CFT

Conclusions

- Partons are actually 'seen' (liberated) in the high energy hadron-hadron collisions
 - central rapidity: small-x partons
 - forward/backward rapidities: large-x partons

Gluons at HERA

High $-Q^2$ evolution : The parton density is decreasing


- **Small**-*x* evolution: An evolution towards increasing density
- The gluon density cannot become arbitrarily high !

Color Glass Condensate

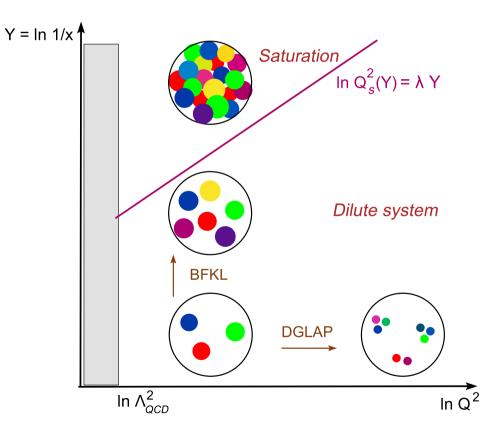
The gluon occupation number cannot be larger than $1/\alpha_s$:

$$n(x,Q^2) \sim \frac{1}{Q^2} \times \frac{xG(x,Q^2)}{\pi R^2}$$

• When $n \sim 1/\alpha_s$, gluons form a Bose condensate: CGC

Motivation

- Partons and jets in pQCD
- •e+e-
- Bremsstrahlung
- Jets
- 3-jet
- Optical theorem
- Current correlator
- DIS
- F2
- Parton evolution
- Gluons at HERA
- Gluons at RHIC
- Saturation momentum


Partons and jets in AdS/CFT

Conclusions

The Saturation Momentum

■ $n(x, Q^2) \sim 1/\alpha_s \Longrightarrow$ the saturation line $Q^2 = Q_s^2(x)$

$$Q_s^2(x) \simeq \alpha_s \frac{xG(x,Q_s^2)}{\pi R^2} \sim \frac{1}{x^{\lambda_s}}$$

Motivation

Partons and jets in pQCD

(A)

- •e+e-
- Bremsstrahlung
- Jets
- 3-jet
- Optical theorem
- Current correlator
- DIS
- F2
- Parton evolution
- Gluons at HERA
- Gluons at RHIC

Saturation momentum

Partons and jets in AdS/CFT

Conclusions

Electromagnetic current in a plasma

Thermal expectation value (retarded polarization tensor) :

Motivation

Partons and jets in pQCD

Partons and jets in AdS/CFT

- Current in a plasma
- AdS/CFT
- Black Hole
- Holography
- Space–like
- Partonic fluctuation
- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenching
- Isotropy

Conclusions

$$\Pi_{\mu\nu}(q) \equiv \int \mathrm{d}^4 x \,\mathrm{e}^{-iq \cdot x} \,i\theta(x_0) \,\langle \left[J_{\mu}(x), J_{\nu}(0)\right] \,\rangle_T$$

- 'Hard probe' : large virtuality $Q^2 \equiv |q^2| \gg T^2$
 - time-like current ($q^2 > 0$) : jets
 - space–like current ($q^2 < 0$) : DIS, partons
- Strong coupling ⇒ AdS/CFT correspondence
- A 'cousin' of QCD: $\mathcal{N} = 4$ Super Yang–Mills theory
 - conformal invariance: coupling is fixed !
 - no confinement, no fundamental quarks ...

A Gauge/Gavity duality (Maldacena, 1997)

• A conformal gauge field theory in D = 4: $\mathcal{N} = 4$ SYM

Type IIB string theory living in D = 10: $AdS_5 \times S^5$

$$ds^{2} = \frac{R^{2}}{\chi^{2}}(-dt^{2} + d\vec{x}^{2}) + \frac{R^{2}}{\chi^{2}}d\chi^{2} + R^{2}d\Omega_{5}^{2}$$

• $0 \le \chi < \infty$: 'radial', or '5th', coordinate

• gauge theory lives at the Minkowski boundary $\chi = 0$

- Strong 't Hooft coupling (more properly, $N_c \to \infty$) : $\lambda \equiv g^2 N_c \gg 1$ with $g^2 \ll 1 \implies$ classical supergravity (no massive string excitations, no string loops)
- Generating functional for the correlations of an operator $\hat{\mathcal{O}}$

$$\left\langle \mathrm{e}^{i \int \mathrm{d}^4 x \hat{\mathcal{O}} \phi} \right\rangle_{4D} \approx \mathrm{e}^{i S_{\mathrm{SUGRA}}[\phi_{cl}]} \quad \text{with} \quad \phi_{cl}(x, \chi = 0) = \phi(x)$$

Motivation

Partons and jets in pQCD

Partons and jets in AdS/CFT

Current in a plasma

● AdS/CFT

- Black Hole
- Holography
- Space–like
- Partonic fluctuation
- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenchingIsotropy

Conclusions

Heating AdS₅

\mathcal{N} = 4 SYM at finite temperature \iff Black Hole in AdS_5

Partons and jets in pQCD

- Partons and jets in AdS/CFT
- Current in a plasma
- AdS/CFT

Black Hole

- Holography
- Space–like
- Partonic fluctuation
- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenching
- Isotropy

Conclusions

Backup

$$ds^{2} = \frac{R^{2}}{\chi^{2}} \left(-f(\chi)dt^{2} + dx^{2} \right) + \frac{R^{2}}{\chi^{2}f(\chi)}d\chi^{2} + R^{2}d\Omega_{5}^{2}$$

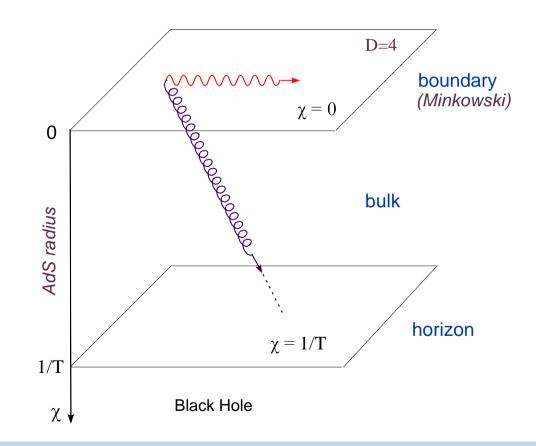
where $f(\chi) = 1 - (\chi/\chi_0)^4$ and $\chi_0 = 1/\pi T$ = BH horizon

- **Example:** compute the plasma entropy density for $\lambda \to \infty$
- The black hole entropy: Bekenstein–Hawking formula

$$S_{\rm BH} = \frac{A}{4G}$$
 with $A =$ horizon area

• ... is identified with the entropy of the $\mathcal{N} = 4$ plasma:

$$\implies s \equiv \frac{S_{\rm BH}}{V_{3D}} = \frac{\pi^2}{2} N_c^2 T^3 = \frac{3}{4} s_0$$



DIS off the Black Hole

(Polchinki, Strassler, 02; Hatta, E.I., Mueller, 07)

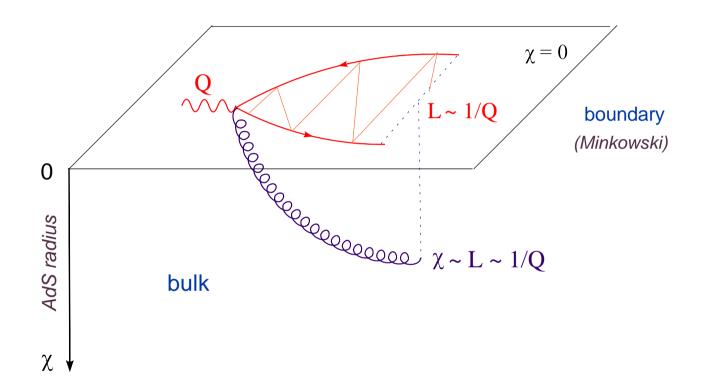
- Abelian current J_{μ} in 4D \longleftrightarrow Maxwell wave A_{μ} in AdS_5 BH
- Im $\Pi_{\mu\nu} \iff$ absorption of the wave by the BH

Maxwell equations in a curved space-time

Motivation

Partons and jets in pQCD

- Partons and jets in AdS/CFT
- Current in a plasma
- AdS/CFT


Black Hole

- Holography
- Space–like
- Partonic fluctuation
- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenching
- Isotropy

Conclusions

The Holographic principle

• 'Holography' : A quantum field theory in $D = 3 + 1 \iff$ A theory with gravitation in higher dimensions

Motivation

Partons and jets in pQCD

Partons and jets in AdS/CFT

(A)

- Current in a plasma
- AdS/CFT
- Black Hole

Holography

- Space-like
- Partonic fluctuation
- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenching
- Isotropy

Conclusions

- Rôle of the 5th dimension: a reservoir of quantum flucts.
- Radial penetration χ of the wave packet in $AdS_5 \iff$ transverse size *L* of the partonic fluctuation on the boundary

Space–like current with $Q \gg T$

• The wave gets stuck near the boundary: $\chi \leq 1/Q \ll 1/T$ Motivation $\chi = 0$ Partons and jets in pQCD () Partons and jets in AdS/CFT $L \sim 1/O$ boundary Current in a plasma 0000 AdS/CFT (Minkowski) Black Hole 0 Holography • Space-like Partonic fluctuation High energy AdS radius Saturation momentum DIS: Large x bulk Small-x partons Saturation line Jet quenching Isotropy Conclusions horizon $\chi = 1/T$ Backup 1/T**Black Hole**

χ

Gravity calculation: Potential barrier proportional to Q

œ

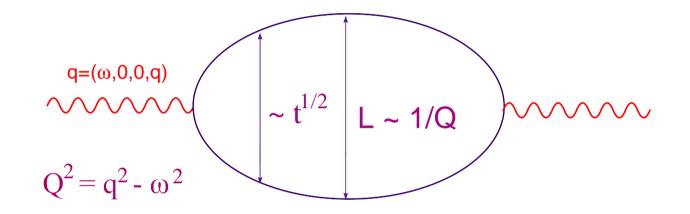
Interpretation: Partonic fluctuation

Motivation

Partons and jets in pQCD

Partons and jets in AdS/CFT

- Current in a plasma
- AdS/CFT
- Black Hole
- Holography
- Space-like

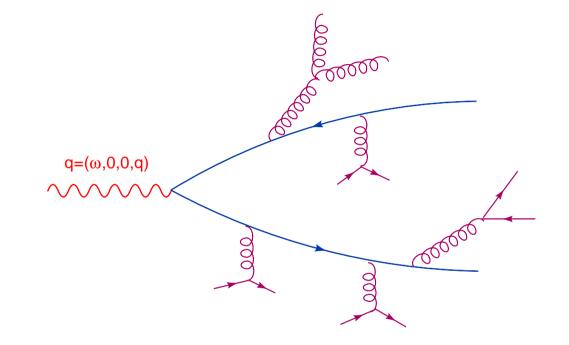

```
    Partonic fluctuation
```

- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenching
- Isotropy

Conclusions

Backup

- By energy-momentum conservation, a space-like current cannot decay (in the vacuum)
- It can develop a virtual partonic fluctuation


By uncertainty principle, this has a transverse size $L \sim 1/Q$

and a lifetime
$$\Delta t \sim \frac{1}{Q} \times \frac{\omega}{Q} \sim \frac{\omega}{Q^2}$$

Partonic fluctuation in the plasma

The situation however changes at finite temperature

Conclusions

Motivation

AdS/CFT
Black Hole

Holography
Space–like

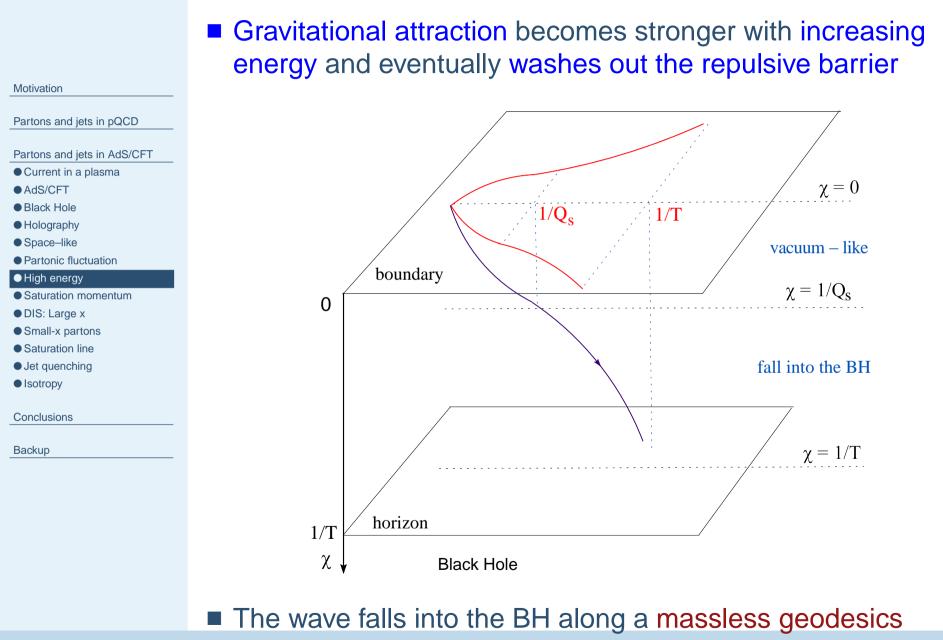
DIS: Large x

Small-x partons

Saturation line

Jet quenchingIsotropy

Partonic fluctuationHigh energy


Saturation momentum

Partons and jets in pQCD

Partons and jets in AdS/CFTCurrent in a plasma

- The current can now decay due to the parton interactions in the plasma \implies Im $\Pi_{\mu\nu}$: a contribution to $F_2(x, Q^2)$
- The above picture is perturbative. How does this change at strong coupling ?

High energy: The fall

(A)

Saturation momentum

Motivation

Partons and jets in pQCD

Partons and jets in AdS/CFT

- Current in a plasma
- AdS/CFT
- Black Hole
- Holography
- Space-like
- Partonic fluctuation
- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenching
- Isotropy

Conclusions

Backup

- Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)
- The criterion for strong interaction within the plasma

Gravitational attraction must overcome the barrier due to energy conservation

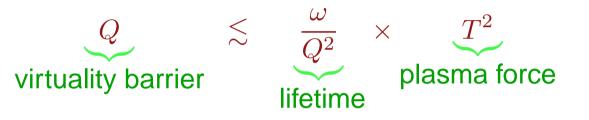
Saturation momentum

Motivation

Partons and jets in pQCD

Partons and jets in AdS/CFT

- Current in a plasma
- AdS/CFT
- Black Hole
- Holography
- Space–like
- Partonic fluctuation
- High energy


Saturation momentum

- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenching
- Isotropy

Conclusions

Backup

- Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)
- The criterion for strong interaction within the plasma

The partonic fluctuation must live long enough to feel the effects of the plasma

Saturation momentum

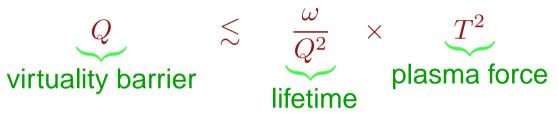
Motivation

Partons and jets in pQCD

Partons and jets in AdS/CFT

- Current in a plasma
- AdS/CFT
- Black Hole
- Holography
- Space-like
- Partonic fluctuation
- High energy

Saturation momentum


- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenching
- Isotropy

Conclusions

Backup

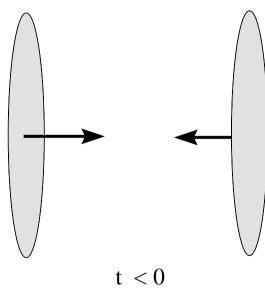
• Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)

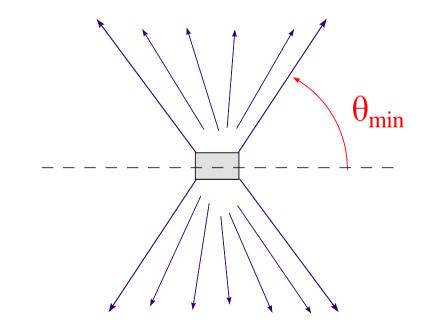
The criterion for strong interaction within the plasma

High energy, or high
$$T$$
, or low Q : $Q \lesssim Q_s$ with

$$Q_s \simeq (\omega T^2)^{1/3} \simeq \frac{T}{x}$$
 where $x \equiv \frac{Q^2}{2\omega T}$

 Q_s(x) plays the role of the plasma saturation momentum (borderline between weak and respectively strong scattering)
 Recall: the parton picture involves 2 variables : x and Q²


DIS at large x : No partons !


• Low energy, or large x: $x > x_s(Q) \simeq T/Q$

- Motivation
- Partons and jets in pQCD
- Partons and jets in AdS/CFT
- Current in a plasma
- AdS/CFT
- Black Hole
- Holography
- Space–like
- Partonic fluctuation
- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenching
- Isotropy

Conclusions

- No scattering (except through tunneling) $\implies F_2(x,Q^2) \approx 0$
 - \implies no partons with large momentum fractions $x > x_s$
- No forward/backward jets in hadron-hadron collisions !

Partons and jets in pQCD

Partons and jets in AdS/CFT Current in a plasma

Motivation

AdS/CFT

Black Hole Holography Space-like

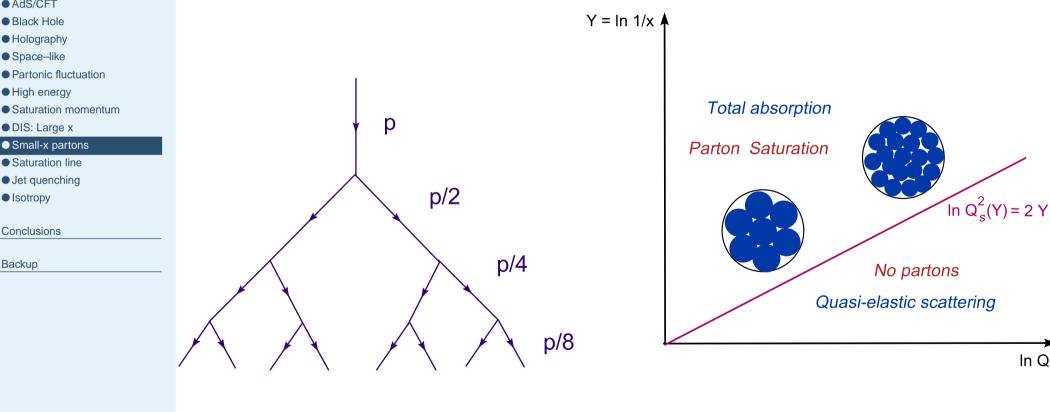
High energy

DIS: Large x Small-x partons

 Saturation line Jet quenching

Isotropy

Conclusions

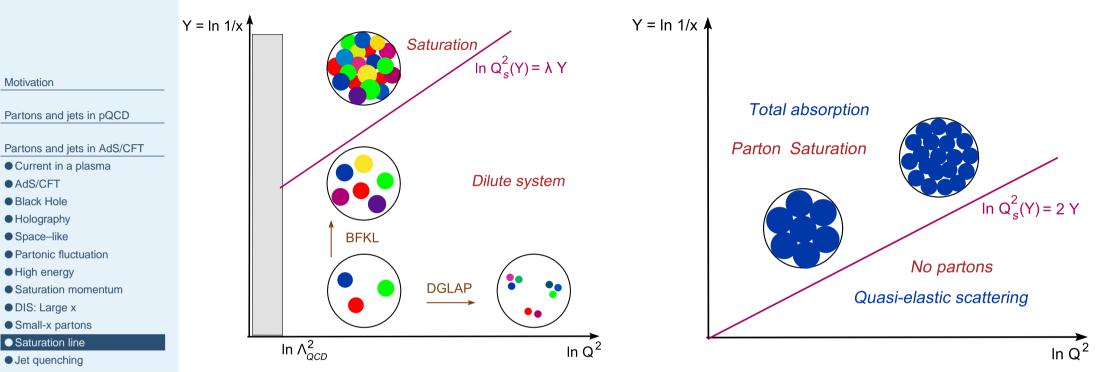

Backup

Low x : Parton saturation

• $x \leq x_s = T/Q$: strong scattering $\implies F_2(x,Q^2) \sim x N_c^2 Q^2$

■ Parton occupation numbers of $\mathcal{O}(1) \implies$ 'saturation' (CGC)

Physical interpretation: 'Quasi-democratic' parton branching



All partons have branched down to small values of x !

 $\ln Q^2$

œ

Saturation line: weak vs. strong coupling

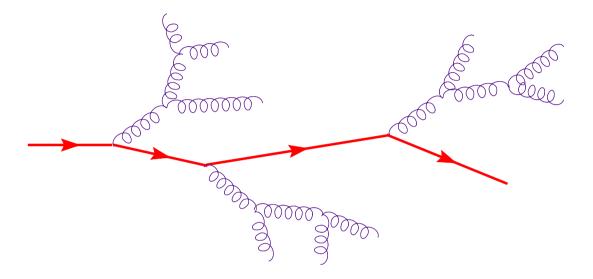
Isotropy

Conclusions

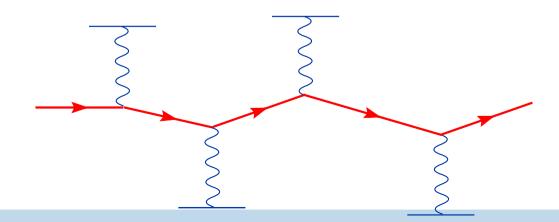
- Saturation exponent : $Q_s^2(x) \propto 1/x^{\lambda_s} \equiv e^{\lambda_s Y}$
 - weak coupling (LO pQCD): $\lambda_s \approx 0.12 g^2 N_c$
 - phenomenology & NLO pQCD: $\lambda_s \approx 0.2 \div 0.3$
 - strong coupling (plasma): $\lambda_s = 2$ (graviton)

Jet quenching

Strong coupling : medium induced parton branching


Partons and jets in pQCD

Partons and jets in AdS/CFT

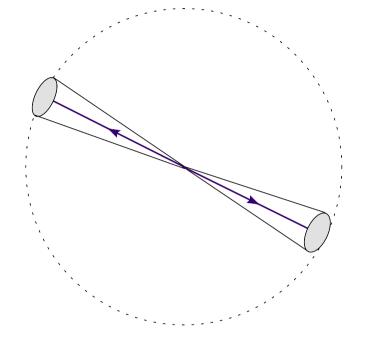

(A)

- Current in a plasma
- AdS/CFT
- Black Hole
- Holography
- Space-like
- Partonic fluctuation
- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenching
- Isotropy

Conclusions

e^+e^- at strong coupling

Time-like current in the vacuum



Partons and jets in pQCD

Partons and jets in AdS/CFT

- Current in a plasma
- AdS/CFT
- Black Hole
- Holography
- Space–like
- Partonic fluctuation
- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Saturation line
- Jet quenching
- Isotropy

Conclusions

- Infrared cutoff $\Lambda \longrightarrow$ splitting continues down to $Q \sim \Lambda$
- In the COM frame → spherical distribution ⇒ no jets ! (similar conclusion by Hofman and Maldacena, 2008)
- Final state looks very different as compared to pQCD !

Conclusions

- Motivation
- Partons and jets in pQCD
- Partons and jets in AdS/CFT
- Conclusions
- Backup

- Hard probes & high-energy physics appears to be quite different at strong coupling as compared to QCD
 - no forward/backward particle production in HIC
 - ♦ no jets in e^+e^- annihilation
 - different mechanism for jet quenching
- Not so surprising: by asymptotic freedom, hard & high-energy physics in QCD is weakly coupled
- Are AdS/CFT methods useless for HIC ? Not necessarily so !
 - some observables receive contributions from several scales, from soft to hard: use AdS/CFT in the soft sector
 - long-range properties (hydro, thermalization, etc) might be controlled by strong coupling

The 'perfect fluid'

Uncertainty principle applied to viscosity:

Motivation

Partons and jets in pQCD

Partons and jets in AdS/CFT

Conclusions

Backup

perfect fluid

- Jets
- Screening length
- 3-jet
- Saturation line
- Branching
- Momentum broadening
- RAA
- Energy loss
- Jet quenching

 $\eta \sim \rho v \lambda_f, \qquad S \sim n \sim \frac{\rho}{m}$

$$\frac{\eta}{S} \sim m v \lambda_f \sim \hbar \frac{\text{mean free path}}{\text{de Broglie wavelength}} \gtrsim \hbar$$

- Weakly interacting systems have $\eta/S \gg \hbar$
- Strongly coupled $\mathcal{N} = 4$ SYM plasma

$$\frac{\eta}{S} \to \frac{\hbar}{4\pi}$$
 when $\lambda \to \infty$

(Policastro, Son, and Starinets, 2001)

- This bound is believed to be universal : $\eta/S \ge \hbar/4\pi$
- The data at RHIC are consistent with the lower limit being actually reached : 'sQGP'

Jets

Motivation

Partons and jets in pQCD

Partons and jets in AdS/CFT

 $\cap \square$

Conclusions

Backup

• perfect fluid

Jets

Screening length

3-jet

Saturation line

Branching

Momentum broadening

• RAA

- Energy loss
- Jet quenching

 e^+ γ^* ooo e^- g

• 'Multi-jet event' : large emission angle & $x \sim \mathcal{O}(1)$

$$k_{\perp} \sim k \sim \sqrt{s} \implies \mathcal{P}_{\text{Brem}} \sim \alpha_s(s) \ll 1$$

small probability for emitting an extra gluon jet !

'Intra-jet activity' : collinear and/or soft gluons

$$\Lambda_{\rm QCD} \ll k_{\perp} \ll k \ll \sqrt{s} \implies \mathcal{P}_{\rm Brem} \sim \alpha_s \ln^2 \frac{\sqrt{s}}{\Lambda_{\rm QCD}} \sim \mathcal{O}(1)$$

modifies particle multiplicity but not the number of jets

Screening length

Motivation

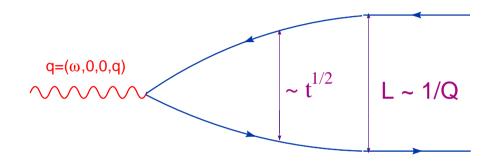
Partons and jets in pQCD

Partons and jets in AdS/CFT

Conclusions

Backup

• perfect fluid


Jets

Screening length

• 3-jet

- Saturation line
- Branching
- Momentum broadening
- RAA
- Energy loss
- Jet quenching

• A small color dipole ('meson') with transverse size $L \ll 1/Q_s$ propagates through the strongly–coupled plasma with almost no interactions !

Larger dipoles with $L \gtrsim 1/Q_s$ cannot survive in the plasma

$$L_s \sim \frac{1}{Q_s} \quad \& \quad \gamma \sim \frac{\omega}{Q} \implies L_s \sim \frac{1}{\sqrt{\gamma}T} \ll \frac{1}{T}$$

■ The dipole lifetime is short on natural time scales:

$$\Delta t \sim \frac{\omega}{Q_s^2} \sim \frac{\sqrt{\gamma}}{T} \ll \frac{\gamma}{T}$$

3-jet event at OPAL (CERN)

Motivation

Partons and jets in pQCD

Partons and jets in AdS/CFT

Conclusions

Backup

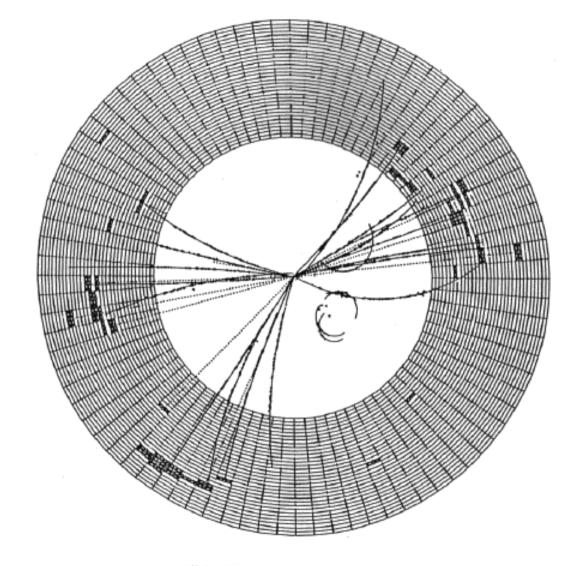
• perfect fluid

Jets

Screening length

● 3-jet

Saturation line

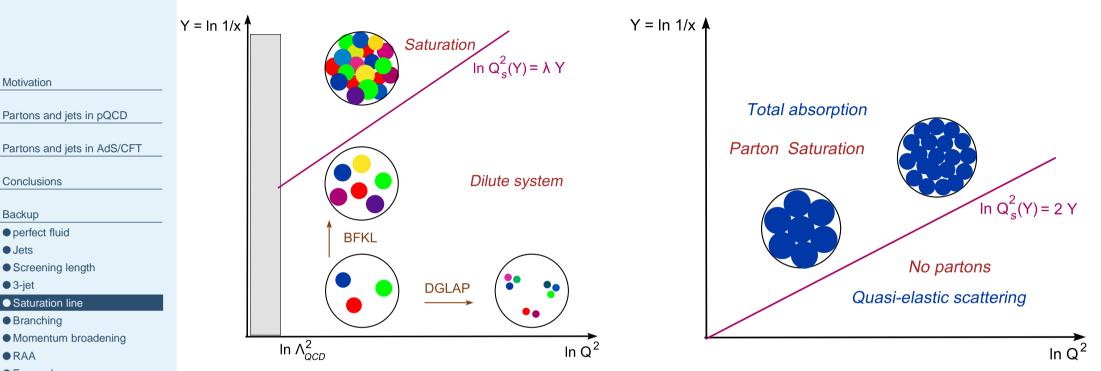

• Branching

Momentum broadening

• RAA

Energy loss

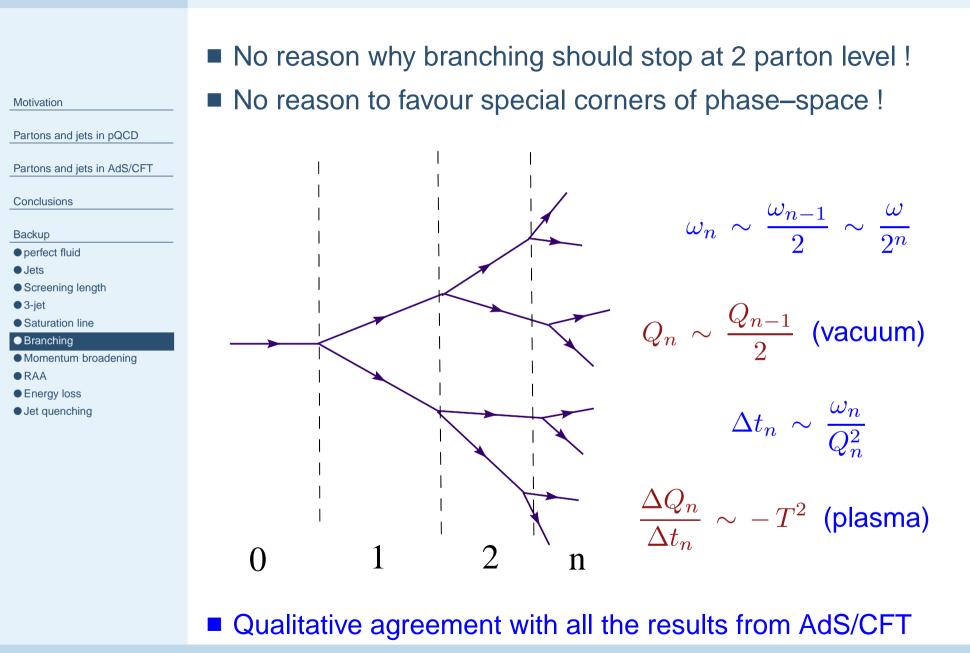
Jet quenching



HAN SUMS (GEV) HAN PTOT 35,768 PTRANS 29,964 PLONG 15,700 CHARGE -2 TOTAL CLUSTER ENERGY 15,169 PHOTON ENERGY 4,893 NR OF PHOTONS 11

x < z z

Saturation line: weak vs. strong coupling

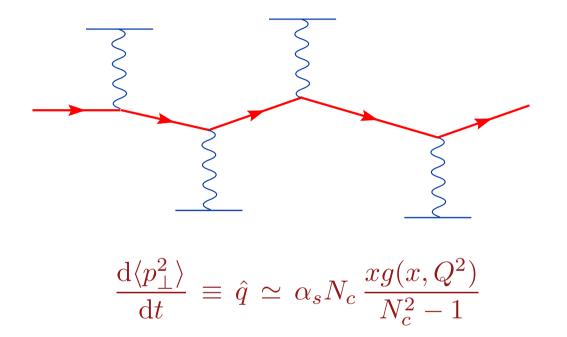


- Energy loss
- Jet quenching

Saturation exponent : $Q_s^2(x) \propto 1/x^{\lambda_s} \equiv e^{\lambda_s Y}$

- weak coupling (LO BFKL): $\lambda_s \approx 1.23 g^2 N_c$
- phenomenology & NLO BFKL: $\lambda_s \approx 0.2 \div 0.3$
- strong coupling (plasma): $\lambda_s = 2$ (graviton)
- strong coupling (dilaton): $\lambda_s = 1$ (graviton)

Quasi-democratic parton branching



(A)

Transverse momentum broadening

A parton (say, heavy quark) undergoes multiple scattering (random kicks) off the plasma constituents

■ $xg(x, Q^2)$: gluon distribution per unit volume in the medium

Weakly–coupled QGP : incoherent sum of the gluon distributions produced by thermal quarks and gluons

 $xg(x,Q^2) \simeq n_q(T) xG_q + n_g(T) xG_g$, with $n_{q,g}(T) \propto T^3$

Motivation

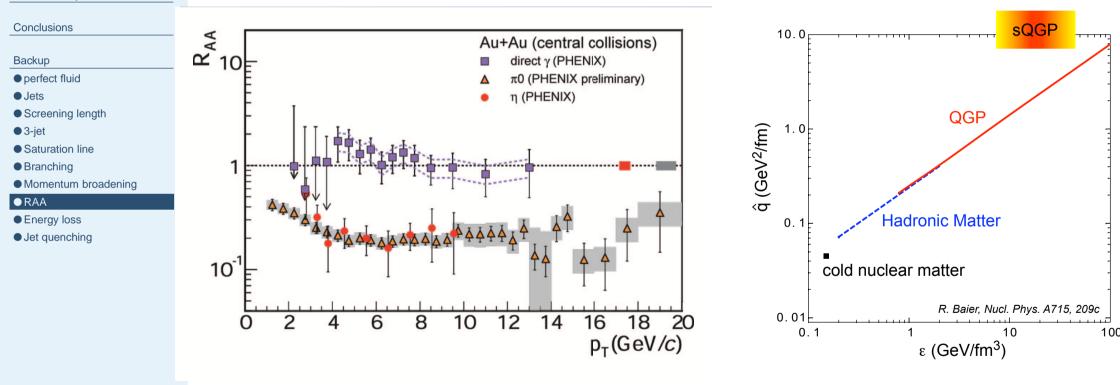
Partons and jets in pQCD

Partons and jets in AdS/CFT

Conclusions

Backup

- perfect fluid
- Jets
- Screening length
- 3-jet
- Saturation line
- Branching


Momentum broadening

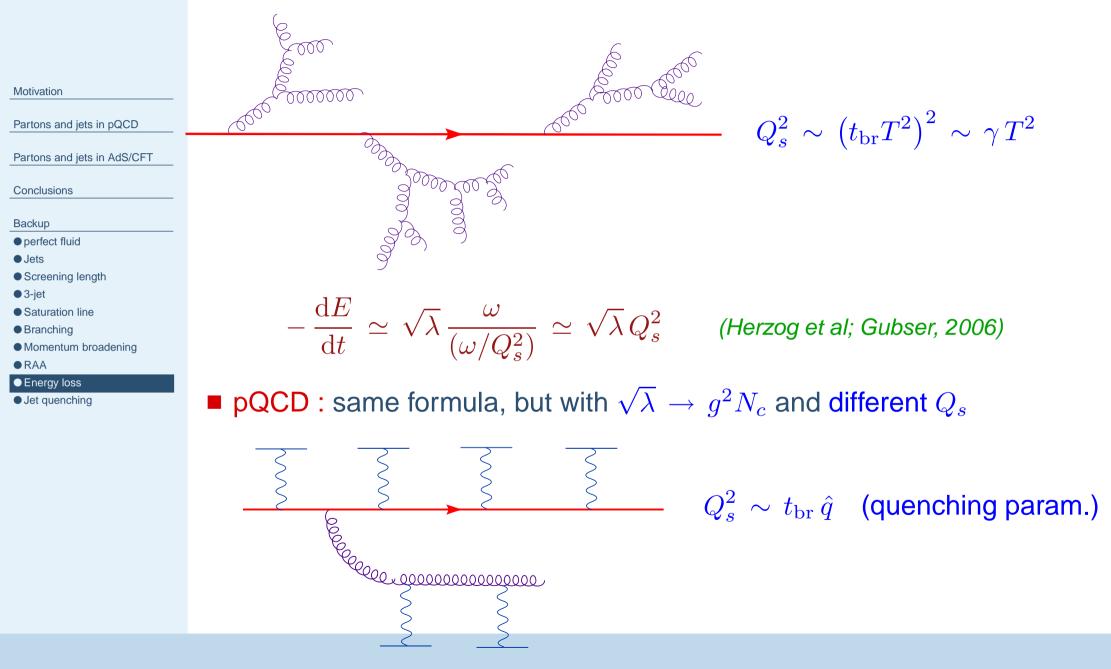
- RAA
- Energy loss
- Jet quenching

Nuclear modification factor

• How to measure \hat{q} ? Compare AA collisions at RHIC to pp

$$R_{AA}(p_{\perp}) \equiv \frac{Yield(A+A)}{Yield(p+p) \times A^2}$$

RHIC data seem to prefer $\hat{q} \simeq 10 \text{ GeV}^2/\text{fm}$, which is too large to be accounted for by weakly–coupled QGP (??)


(A)

Motivation

Partons and jets in pQCD

Partons and jets in AdS/CFT

Heavy Quark: Energy loss

(A)

(A)

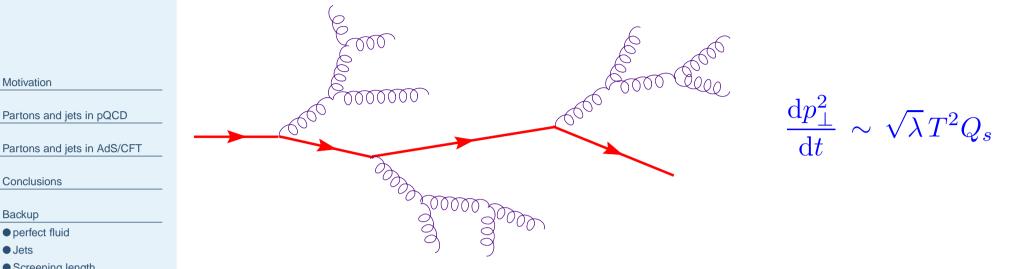
Motivation

Conclusions

Screening length

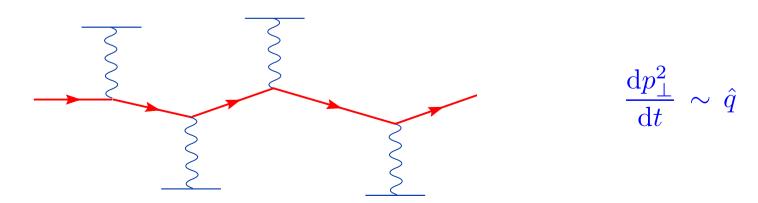
 Saturation line Branching

Jet guenching


Momentum broadening

Backup • perfect fluid Jets

3-jet


RAA Energy loss

Transverse momentum broadening

Casalderrey-Solana, Teaney, 2006; Gubser, 2006; Dominguez et al, 2008 see talks by Al Mueller and Cyrille Marquet

pQCD : different physics ! thermal rescattering

