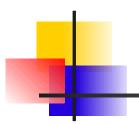
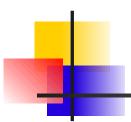


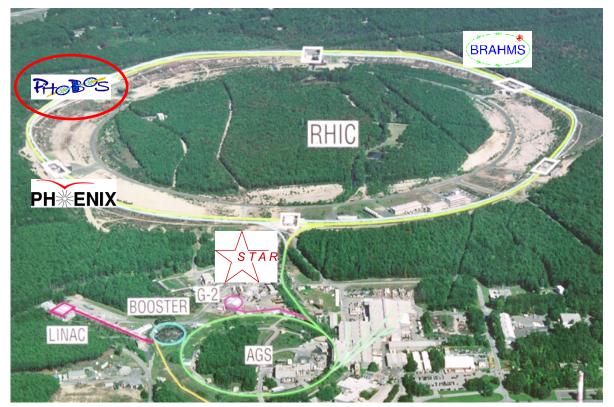
PROOF in PHOBOS



Maarten Ballintijn / MIT

maartenb@mit.edu


May 24, 2006 – Application Area Meeting

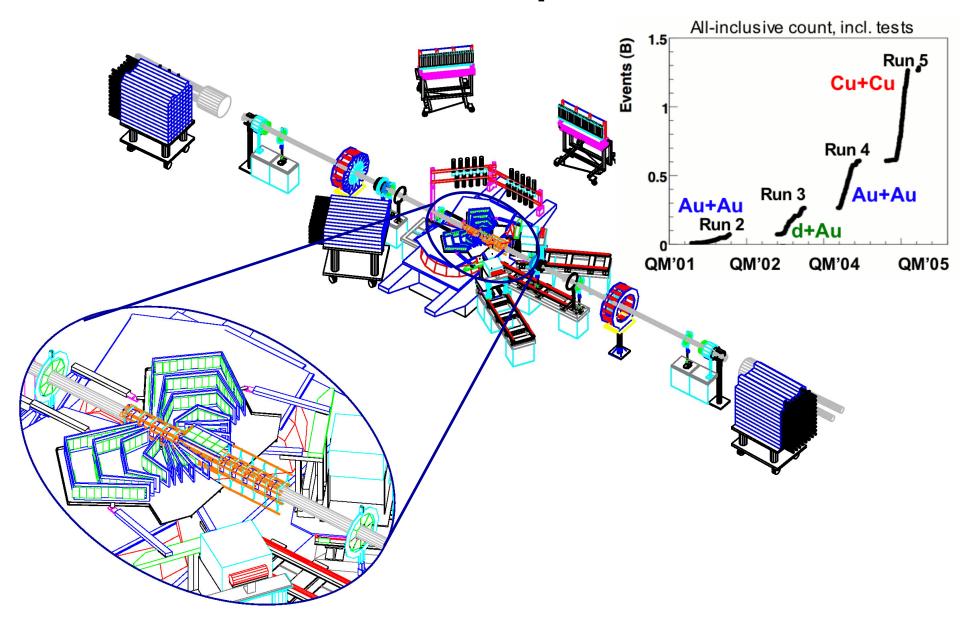


Outline

- The PHOBOS Experiment at RHIC
- Data Analysis at RCF
- PROOF at RCF
- Analysis Examples
- Future PROOF Developments at MIT

Relativistic Heavy Ion Collider (RHIC)

- 4 Experiments
 - 2 big and 2 small
- Complementary capabilities

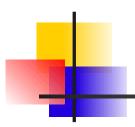

First Physics in '00 Versatile machine


- Au+Au
 ('00-'02)

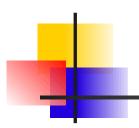
 19.6 GeV
 56 GeV
 130 GeV

 200 GeV
- p+p ('02,'03)200 GeVpolarized
- d+Au (`03)200 GeV

PHOBOS Experiment

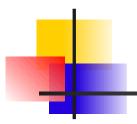


Data Analysis at RCF


- RHIC Computing Facility
 - Large centrally managed facility
 - Sub cluster for each experiment
- Components of the Facility
- Batch System
- Data Storage and Data Handling

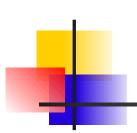
Components of the Facility

- 25 Interactive Nodes
- 425 Compute nodes w/ distributed disk
 - 100 TB disk space
 - Mix of 100Mb and 1Gbit Ethernet
- HPSS tape robot / Mass Storage System
- Centralized disk space
 - NFS (0.9 TB) home directories, software
 - Panasas (3.8 TB) data, proof work directories



Batch Systems

- LFS batch system
 - Phased out in favor of Condor because of cost
- Condor
 - Kerberos authentication
 - Computing on Demand (COD) enabled for use with PROOF
 - Complex configuration 4 priority levels (queues) – 4 x larger # VMs


Data Storage and Handling

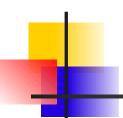
- NFS servers
 - Home directories, Software, some Data
- Panasas
 - Replacing NFS for data
 - Used for PROOF directories
- Distributed Disk and rootd
 - Highly scalable
 - Cost effective
 - Needs management software: CatWeb

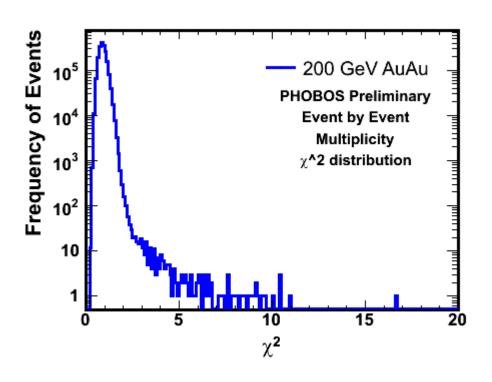
CatWeb Catalog and Data Manager

- PHOBOS File Catalog
 - All reconstructed and DST data (in HPSS MSS)
- Data management
 - Web based user interface
 - Database back-end and daemons for pools
- Storage pools scatter data to avoid hot spots
- FileSets
 - Global and per user
 - Unit of data management and file access

PHOBOS Software Environment

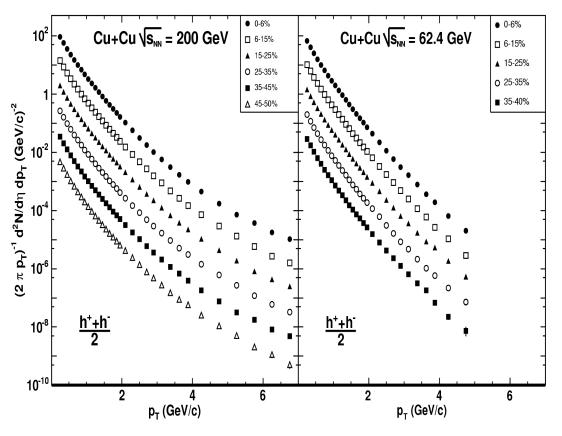
- PhAT Phobos Analysis Toolkit
 - ROOT based analysis environment
 - Collection of modules implementing reconstruction, calibration and analysis
 - AnT Analysis Tree DST supporting all PHOBOS Analysis efforts
 - PAR files available for all the modules
 - TGrid Interface to CatWeb

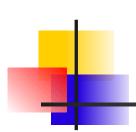

- Direct (xinetd) vs. Condor COD
- Intelligent proofserv wrapper
 - Multiple versions
 - No root access
 - Debug support (e.g. run with valgrind)
- PROOF server configuration
 - Per user config files deprecated
 - Global predefined config files
 - Need a resource broker / scheduler



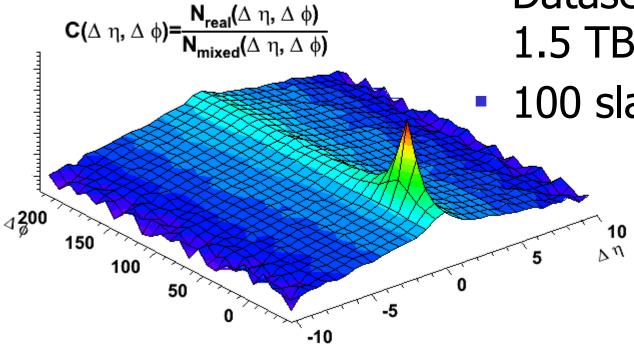
Analysis Examples

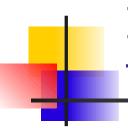
- These analysis examples were prepared using PROOF
- Presented at the Quark Matter 2005 conference in Budapest, Hungary
- For detailed information see:
 - Structure and Fine Structure of Hadron Production at RHIC, Gunther Roland, QM05 proceedings


Rare high multiplicity event search


- Burak Alver
- Dataset: 11k files,4.5 TB
- 150 slaves, ~1 hour

Cu and Au Transverse Momentum Spectra

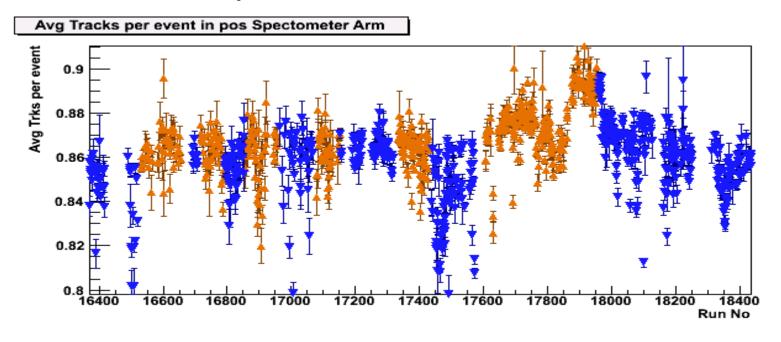

- Edward Wenger
- Dataset: 40k files, 13.5 TB
- 100 slaves, 45 min

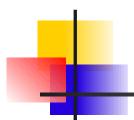


Two Particle Correlations @ 200GeV

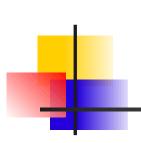
Two particle correlation function of minbias dAu 200Gev

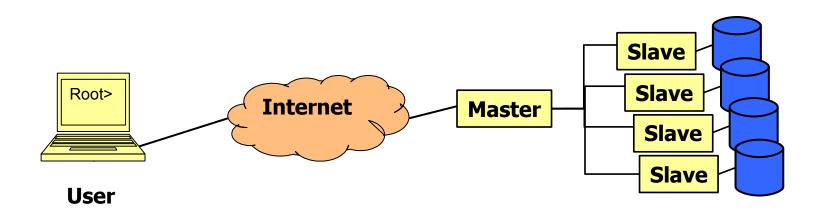
- Wei Li, Constantin Loizides
- Dataset: 4.5k files,1.5 TB
 - 100 slaves, 75 min

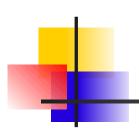


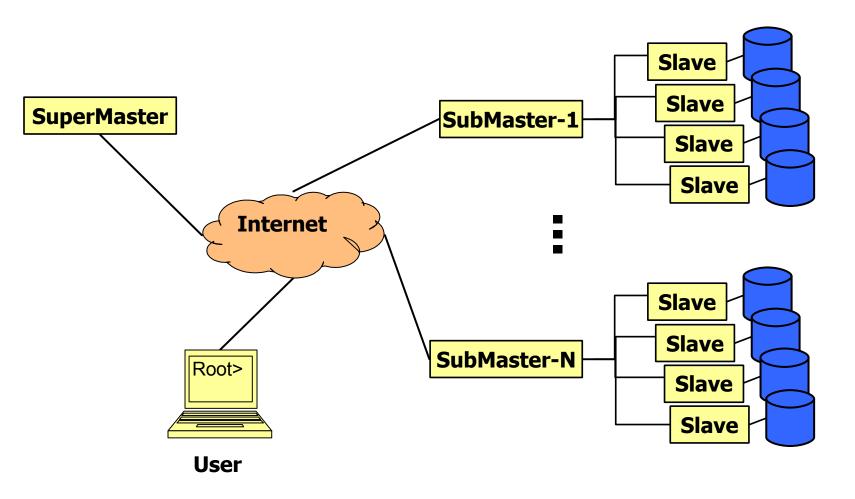

Identified Particle ratios using the Spectrometer

- Vasundhara Chetluru
- Dataset 40k files, 13.5 TB
- 100 slaves, 90 min

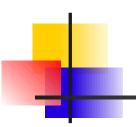



Future Work


- Deploy PROOF into CMS Tier-2 Facilities
 - Starting with the Tier-2 at MIT
- Improve integration with schedulers and batch systems at RCF and on the Grid
- Extend multi-level master functionality
 - Started by Kris Gulbrandsen
 - Focus on packetizer
- Improved error handling


Multi Level Master configurations

- Default 3-tier configuration
 - client master: Low bandwidth / high latency
 - master slaves: High bandwidth / low latency


Multi Level Master configurations

Multi Level Master Configurations

- Geographically distributed setup (Grid)
 - Distributed data
 - Distributed computing power (replicated data)
- Scalability in large cluster
 - Parallel merging
 - Local network topology
- Static super packetizer based on mass storage domain tag

Questions?

