
xrootd
Authentication & Authorization

Andrew Hanushevsky
Stanford Linear Accelerator Center

6-June-06

June 6, 2006 2: MWSG

Goals

Flexible security architecture
Multiple protocols

Easily expandable

Simultaneous heterogeneous protocols
Allow multiple administrative domains

Simple administration
Minimal server configuration
NoNo client configuration needed

June 6, 2006 3: MWSG

Authentication & Authorization

Developed as runtime plug-in components
Easy to substitute
Trivial to extend

Client/Server architecture plugin aware
Designed for flexibility from the start

Application layer architecture
Portable to other application architectures

June 6, 2006 4: MWSG

xrootd Server Architecture

Protocol LayerProtocol Layer

FilesystemFilesystem Logical LayerLogical Layer

FilesystemFilesystem Physical LayerPhysical Layer

FilesystemFilesystem ImplementationImplementation

Protocol & Thread ManagerProtocol & Thread Manager

(included in
distribution)

p2p heart

June 6, 2006 5: MWSG

Security Architecture

login

authenticate

Client-Specific Security Configuration

libXrdSec.solibXrdSec.so

Protocol
Selection

Self
Configuration

Security Token

Multiple handshakes allowedMultiple handshakes allowed
during authentication phaseduring authentication phase

(required by some PKI protocols)

libXrdSecgsi.so

libXrdSeckrb4.so

libXrdSeckrb5.so

libXrdSecpwd.so

Dynamically selected by client
Server specifies availability

Libraries managed by Libraries managed by libXrdSec.solibXrdSec.so

June 6, 2006 6: MWSG

Authentication I
Specified by config file directives

xrootd.seclib so_path
xrootd.seclib /opt/rooted/lib/libXrdSec,so

sec.protocol [libpath] protid
sec.protocol gsi
sec.protocol krb5

sec.protbind hostpat { none | [only] protocols }
sec.protbind * only gsi
sec.protbind *stanford.edu krb5 gsi
sec.protbind *slac.stanford.edu none

June 6, 2006 7: MWSG

Authentication II

Server constructs configuration for clients
Client specific
Information contained in security “token”

Client needs are simple
Protocol manager library + protocol libraries

No libraries needed for host authentication

No fuss, no mess, no bother
Server configures the client at run-time

June 6, 2006 8: MWSG

Heterogeneous Security Support

• Servers have one or more
protocol objects

• Server protocol objects created
at server initialization time

• Client selects which protocol to
use when security context created

• Protocol object created based on
configuration returned by xrootd

• One security context object per
physical xrootd connection

• Protocol objects may be shared
by one or more contexts

• Each “pass” through a security
context object may generate
credentials to be passed to xrootd

protocolsprotocols

June 6, 2006 9: MWSG

Authentication Information

char prot[XrdSecPROTOIDSIZE]; // Protocol used
char *name; // Entity's name
char *host; // Entity's host name
char *vorg; // Entity's virtual organization
char *role; // Entity's role
char *endorsements; // Protocol specific endorsements
char *tident; // Trace identifier (do not touch)

Passed to file system layer to be used for authorizationPassed to file system layer to be used for authorization

June 6, 2006 10: MWSG

Authorization Challenge
Number of files

Billions and billions of files
Amount of data is a moot point

Access control list model unmanageable
Too many files to protect

Don’t want to record usernames in many places

Capability model is manageable
Few users relative to number of files

Usernames recorded only once
Each user given access to arbitrary file space regions

June 6, 2006 11: MWSG

Authorization Approach

Works as a plug-in
ofs.authlib path [parms]
ofs.authorize

Default authorization is built-in
Basic NT-like access control

June 6, 2006 12: MWSG

Authorization Architecture

u abh rw /slac/files/usr/abh
r /cern/files

libXrdSec.so
lib????.so

Authentication
Authorization

June 6, 2006 13: MWSG

Builtin Architecture Detail

access()access() yesyes or nono

client database
request

liboofs.so

u abh rw /slac/files/usr/abh
r /cern/files

lib????.so
or builtin

June 6, 2006 14: MWSG

Builtin Authorization Model
Capability based model

Each entity has a list of capabilities
A capability is a path prefix-privilege pair

Any number of such pairs may be specified
More scalable when number of objects greatly exceeds number of entities

Can mimic an access control model

Entities can be:Entities can be:
Hosts

NIS Netgroups
Unix Groups

Users
u abh rw /slac/files/usr/abh

r /cern/files

June 6, 2006 15: MWSG

Builtin Authorization Entities

idtypeidtype id { path privs | tempid } [• • •] [\]
g - Unix group name

Applied when user is a member of the group
h - Host name

Applied when request originates from this host
Always fully qualify the host name and specify in lower case

n - NIS netgroup name
Applied when the triplet (hostname, username, domainname) is a
member of the specified netgroup

t - template name
Specification substituted in future authorization records for tempid

u - user’s name (can be DN)
Applied for specific user, as identified by authentication protocol

June 6, 2006 16: MWSG

Special Entities
u = { path privs | tempid } [• • •] [\]

User’s name replaces the first occurrence of @= in path
Allows specializing privileges by user’s name without listing all users

Only one such entry may exist
Example:

u = u = /usr/@=/files/usr/@=/files aa
User abh has all privileges for /usr/abh/files

u * { path privs | tempid } [• • •] [\]
The entry applies to all users regardless of the originating host
Essentially default privileges

Only one such entry may exist
Example

u * /files u * /files rwsrws

FungibleFungible

DefaultDefault

June 6, 2006 17: MWSG

Builtin Authorization Privileges

idtype id { path privsprivs | tempid } [• • •] [\]
a - all privileges i - insert (create) l - lookup r - read
d - delete k - lock (unused) n - rename w - write
Positive and negative privileges allowed

Negative privileges always override positive privileges
Examples

u aaa /foo rw
User aaa has read/write privileges in /foo

u abh /foo a-n
User abh has all privileges except rename in /foo

u xyz /foo –wind
User xyz is denied write/insert/rename/delete privileges in /foo

June 6, 2006 18: MWSG

Principal of Least Privilege
For the first applicable path, if any, in each of

Default entry
Fungible user entry
Specific user entry
Entry for originating host
All Unix groups in which user is a member
All netgroups to which (hostname, username, domainname) applies

Logically add together positive privileges
pos_privs |= new_pos_privs

Logically add together negative privileges
neg_privs |= new_neg_privs

Final privileges are positive less negative privileges
final_privs = pos_privs & ~neg_privs

June 6, 2006 19: MWSG

Entities and Certs

Some entities equivalent
User Name and DN
Host

Others are not clear
Group, Netgroup

Additions are needed
Vorg and Role (the definition?)

Endorsement handling is totally unclear
Future ProjectFuture Project

June 6, 2006 20: MWSG

Summary

xrootd security
Fully configurable, extendable, even replaceable

Standards-based authentication
GSI
Kerberos (version 4 or 5)
Host based
Password

Builtin Capability-based authorization
Extensive privilege support
Auditing

Good model for application level security

