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Detection, current, charge I

event

Number
Or 
Decision

 Physical detection → movement of charges in strong E field
Induction of currents in conductors (electrodes)

 Most other instrumentation: 
Change in impedance
Change in electro(chemical) potential



  

Thevenin and Norton

A « source » is 
represented by an 
electric circuit, which 
can be simplified as:

An imperfect voltage 
source (Thevenin)

An imperfect current 
source (Norton)

Z

Z



  

Amplifiers

Amplifiers are « matched » to sources.  

Ideal voltage sources with ideal voltage amplifiers

Ideal current sources with ideal current amplifiers

Voltage amplifier: high impedance

Current amplifier: low impedance

In fact, the output is always a voltage:

Voltage – voltage amplifier (« normal » amplifier)

Current – voltage amplifier (transimpedance amp.)



  

How to make a transimpedance 
amplifier ?

-A

V-in
V-out

V-out = - A V-in

- A

V-in V-out

V-out = - A V-in ;
V-in – V-out = I-in Z ;
A very big, hence V-in much 
smaller than V-out, hence:

V-out = - Z I-in

Z

I-in



  

« Current » vs. « Charge »

- A

V-in V-out

R

I-in

- A

V-in V-out

I-in

C

V out t =
−1
C
∫ i it dt=

−Q t 
C

V out s=
−1
s.C

I i sV out s=−R I i s

vout t =−Ri it 



  

Input impedance

- A

V-in V-out

Z

I-in

V i=V outi i .Z

V out=−AV i

V i=−AV iii Z

Z i=−A .Z iZ

1AZ i=Z

Z i=
Z

A1

I-in

Zi



  

Noise sources I

Represented by voltage 
or current sources

V or I is a random 
process with average 
0 and given 
autocorrelation.

Wiener-Khinchine: 
power spectral 
density (one-sided)

+

-

v i

f t1=X 1 ; f t 2=X 2

〈 X 1 〉=0

R =〈 X 1 X 2 〉 ;=t2−t1

R 0= 〈 X 1
2 〉= f rms

2

S  f =4∫=0

∞
Rcos2 f d 



  

Noise sources II

Power spectral density 
and RMS

Noise and linear filter

White noise

S(f) = constant

R ~ Dirac function

vRMS= R0=∫f =0

∞
S  f df

H(s)

vS(f)
v' 

S '  f =∣H  j 2 f ∣2
S  f 

S'(f)



  

Physical noise sources

Thermal (Johnson or 
Nyquist) noise in 
resistors (white noise)

Shot noise in PN 
barriers (white noise)

Flicker noise, 1/f noise, 
pink noise

R

R

S(f) = 4 k T R

R

v

i

S(f) = 4 k T / R

I

i

S(f) = 2 q I



  

Networks with noise sources.

v1

v2

i3

v-out

i-in

V out s=H 1sV 1 s...
H 2 sV 2 sZ 3 s I 3sZ  s I i  s

S out  f =∣H 1 j 2 f ∣2S 1 f ∣H 2 j 2 f ∣2S 2 f ∣Z 3 j 2 f ∣2S 3 f 

S equi  f =
S out  f 

∣Z  j 2 f ∣2



  

Example 1

C

Rv
V out s=

R

R 1
sC

V i=
RC s

1RC s
V i

∣H  j 2 f ∣2=∣ j 2 f RC
1 j 2 f RC

∣
2

= 42 f 2 R2C2

142 f 2 R2C2

S '  f = 42 f 2 R2C2

142 f 2 R2C2 S  f 

V-out

Log ff ~ 1/(2 pi R C)



  

Example 2 (exercise)

C

Ri

V-out

V out s=R I  s

S'(f) = ?



  

Equivalent noise of amplifier

i_n

v_n

Z



  

Equivalent noise of amplifier II

Case of voltage 
amplifier (Thevenin)

Case of current 
amplifier (Norton)

i_n

v_n

Z

vequi s=vn sZ  sin s
S equi  f =S vn

 f ∣Z  j 2 f ∣2S in
 f 

i_n

v_n

Zv-equi

i-equi

iequi s=in s
vn s
Z  s

S equi  f =S in
 f 

S vn
 f 

∣Z  j 2 f ∣2



  

Equivalent noise of amplifier III

i_n

v_n

Z

i-equi
S equi  f =S in

 f 
S vn

 f 

∣Z  j 2 f ∣2

Load is capacitive: Z= 1
sC

S equi  f =S in
 f 42 f 2S vn

 f 

Load is resistive: Z = R S equi  f =S in
 f 

S vn
 f 

R2



  

Shaping

Shaping for charge: impulse response of 
overall circuit

long enough to « integrate » the charge

short enough to limit « dead time »

signal = maximum of pulse

best possible signal/noise ratio

vout t =∫=−∞

t
i h t−dt

h(t)

i(t)

V s=H  s I s noise

f

I(s)

I(s)

H(s)

t



  

Shaping and scaling
A « unit charge » will generate an impulse 

response of which the height is the « gain » of 
the amplifier chain.

Scaling the time axis (k times faster), but keeping 
the gain (maximum value):

h t h ' t =h k t 

H s=∫0

∞
h t e−s t dt

H sH ' s= 1
∣k∣

H  s
k


t



  

Application: scaling of S/N  1 

H(s)

i_n

i_sig

The signal has always the same intensity (fixed gain)
we need to look at the change of the noise as a function of 
time scale.
Noise = RMS value of noise (to be compared with peak signal)

N 1=∫f =0

∞
∣H  j 2 f ∣2 S  f df

N 2=
1
k ∫ f =0

∞
∣H  j 2 f

k
∣

2

S  f df

= 1

 k ∫u=0

∞
∣H  j 2u ∣2S k udu

f/k = u



  

Scaling of S/N 2

Let us assume a very 
simple filter: perfect 
lowpass filter (with 
sinc response):

f < f0  then |H(f)| = A

f > f0 then H(f) = 0

N 1=∫f =0

∞
∣H  j 2 f ∣2 S  f df

N 1=∫f =0

f 0

A2S  f df

N 2=
1

 k ∫u=0

∞
∣H  j 2u∣2 S k u du

N 2=
1

 k ∫u=0

f 0

A2S k u du

f
f0

A



  

Scaling of S/N 3

Case of resistive load

assume white equivalent 
noise sources

S equi  f =S in
 f 

S vn
 f 

R2 =S n

N 1=∫f =0

f 0

A2S  f df

N 1= f 0 A
2S n

N 2=
1

 k  f 0 A
2S n=

N 1

 k

N 2=
1

 k ∫u=0

f 0

A2S k u du

A k times FASTER amplifier has sqrt(k) times LESS noise ; 
the signal-to-noise ratio IMPROVES for faster amplifiers!



  

Scaling of S/N 4
Capacitive load

Assume only voltage noise,

assume it to be white

current noise will behave as in 
the « resistive case »

N 1=∫f =0

f 0

A2S  f df

N 2=
1

 k ∫u=0

f 0

A2S k u du

S equi  f =S in
 f 42 f 2S vn

 f 

S equi  f =42 f 2 S vn

N 1=∫f =0

f 0

A2 42 f 2S vn
df =2 A S vn

f 0
3

3

N 2=
1

 k ∫u=0

f 0

A2 42 k 2u2S vn
du= k ∫u=0

f 0

A2 42u2S vn
du= k N 1

This time, a k times FASTER amplifier has sqrt(k) times MORE noise ;
a faster amplifier DETERIORATES the S/N ratio.



  

Scaling of S/N 5

Current noise at the input: a faster amplifier 
IMPROVES S/N

Voltage noise with resistive load: a faster 
amplifier IMPROVES S/N

Voltage noise with capacitive load: a faster 
amplifier DETERIORATES S/N

Mixed case: it depends on the relative 
contributions: there will be an optimum amplifier 
speed.



  

Resistive charge division: principle

R1 R2

i

x1 x2

L

A B
i1 i2

x1 ~ R1

x2 ~ R2

x1 + x2 = L

R1 + R2 = R

i1=
R2

R1R2

i

i2=
R1

R1R2

i
A ~ i1

B ~ i2 x2−x1

L
= A−B

AB



  

Charge division: noise.

R1 R2

i

A B
i1 i2

in1 in2

vn1 vn2

+ +

i1=in1
v n2−vn1

R1R2

i nR
R2

R1R2

i

inR

i2=i n2−
vn2−vn1

R1R2

−i nR
R1

R1R2

i

i1−i2=i n1−in22
vn2−v n1

R1R2

2 inR
R2−R1

R1R2

i i1i2=i n1in2i

Smin=S iS i
4

R2 S vS v4 S R=2 S i
8S v

R2 16k T
R

S plus=2 S i



  

Charge division: resolution

p=D
S dp=dD

S
−D

S
dS
S
= 1

S
dD− p dS 

rms p=
1
S rms D 2 p2rms S 

2

rms D=∫ f =0

∞
∣H∣2Smindf rms S=∫f =0

∞
∣H∣2 S plus df

Relative position
from -1 to 1.

x= p
2
L Physical position

rms x=
L

2 S rms D 2 p2rms S 
2

Position resolution (1 sigma)
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Detection, current, charge I

event

Number
Or 
Decision

 Physical detection → movement of charges in strong E field
Induction of currents in conductors (electrodes)

 Most other instrumentation: 
Change in impedance
Change in electro(chemical) potential

A nuclear detection event usually ressorts ultimately 
in the movement of charges (photodetectors, gas 
detectors, silicon detectors,...) which induce currents 
in electrodes.
Most other instrumentation, most other sensors are 
rather based upon a change in impedance, or a 
change in electrochemical potential.  Examples: 
thermocouples, strain gauges, reflectometry, …

This characterises the nuclear instrumentation front 
end as particular.
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Thevenin and Norton

A « source » is 
represented by an 
electric circuit, which 
can be simplified as:

An imperfect voltage 
source (Thevenin)

An imperfect current 
source (Norton)

Z

Z

In order to use a physical detection device in an 
electronic circuit, one has to model it with circuit 
elements which represent as accurately as possible 
the electric behaviour of the device.  So these 
devices are modeled as an electrical circuit 
containing sources and impedances.
Ideal sources are voltage sources or current sources. 
In practice, a source that acts as a voltage source, 
will nevertheless lower its voltage when a current is 
drawn, and a current source will lower its current 
when it has to drive a high potential difference, due to 
physical phenomena in whatever the source.  This is 
described by several network elements.
As seen from their « connection point », any such 
circuit can be represented by a single source and a 
single impedance.  For a voltage source, this is a 
series impedance (Thevenin), for a current source 
this is a parallel impedance (Norton).  Both are 
equivalent.
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Amplifiers

Amplifiers are « matched » to sources.  

Ideal voltage sources with ideal voltage amplifiers

Ideal current sources with ideal current amplifiers

Voltage amplifier: high impedance

Current amplifier: low impedance

In fact, the output is always a voltage:

Voltage – voltage amplifier (« normal » amplifier)

Current – voltage amplifier (transimpedance amp.)

An amplifier tries to minimise the effects of 
« imperfections » of the source.  This means that a 
voltage amplifier is not supposed to draw any current, 
and that a current amplifier is not supposed to show 
any voltage at its input.
Ideally, a voltage amplifier has an « open » input, and 
a current amplifier has a « shorted » input.  In 
practice, one tries to have as high as possible the 
input impedance of a voltage amplifier and as low as 
possible the input impedance of a current amplifier.
Normally, amplifiers are « voltage amplifiers ».  They 
have a dimensionless amplification (voltage (out) 
over voltage (in) )
Current amplifiers have an impedance (ohms) as 
amplification: (voltage (out) over current (in) ).
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How to make a transimpedance 
amplifier ?

-A

V-in
V-out

V-out = - A V-in

- A

V-in V-out

V-out = - A V-in ;
V-in – V-out = I-in Z ;
A very big, hence V-in much 
smaller than V-out, hence:

V-out = - Z I-in

Z

I-in

A normal amplifier has an input voltage V-in and an 
output voltage V-out, proportional to the input voltage. 
 Amplification factor (minus) A.
The input impedance is very high (no current flows 
into the amplifier input)
Consider that we have such an amplifier, with a very 
large amplification factor A.  By connecting an 
impedance between the input and the output, the 
input current will flow through this impedance (cannot 
flow into the amplifier directly).  We find that the 
output voltage is (minus) the impedance times the 
input current.
The minus sign is necessary for stability.
The calculation is also valid in the frequency domain 
of course.
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« Current » vs. « Charge »

- A

V-in V-out

R

I-in

- A

V-in V-out

I-in

C

V out t =
−1
C
∫ i it dt=

−Q t 
C

V out s=
−1
s.C

I i sV out s=−R I i s

vout t =−Ri it 

The application to two idealised amplifiers:
- the perfect current amplifier
- the perfect charge amplifier

The output voltage is proportional to the current with 
the perfect current amplifier.
Amplification is given in « volt per (nano) ampere » or 
(giga) ohm.

The output voltage is proportional to the integrated 
charge with the perfect charge amplifier.
Amplification is given in « volt per (pico) coulomb » or 
« one over (pico) farad ».

Practical limitations: finite bandwidth of amplifier for 
the current amplifier, drift and bias current for the 
charge amplifier.
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Input impedance

- A

V-in V-out

Z

I-in

V i=V outi i .Z

V out=−AV i

V i=−AV iii Z

Z i=−A .Z iZ

1AZ i=Z

Z i=
Z

A1

I-in

Zi

The input impedance is the voltage-current 
relationship « seen » by the source.  It can easily be 
calculated for our trans-impedance amplifier built 
around a voltage amplifier.
The aim is to have a low input impedance, and we 
see that it is proportional to the « gain » of the 
amplifier (Z), and inversely proportional to the 
amplification factor of the voltage amplifier we started 
out with.
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Noise sources I

Represented by voltage 
or current sources

V or I is a random 
process with average 
0 and given 
autocorrelation.

Wiener-Khinchine: 
power spectral 
density (one-sided)

+

-

v i

f t1=X 1 ; f t 2=X 2

〈 X 1 〉=0

R = 〈 X 1 X 2 〉 ;=t2−t1

R 0= 〈 X 1
2 〉= f rms

2

S  f =4∫=0

∞
Rcos2 f d 

Noise sources are represented by time dependent 
voltage sources or current sources in a network.  
Their time dependence is given by a random process 
(a randomly drawn function from a set of possible 
functions with statistical properties).
For each individual time t1, the value of such a 
random process is a random number with a statistical 
distribution.  We assume that the average is 0.
For each pair of times t1 and t2, the values of the 
random process at these times is a couple of random 
numbers.  The correlation between the two values as 
a function of the time difference, is the auto 
correlation function.   For tau = 0, this is nothing else 
but the square of the RMS value
The (double of the) Fourier transform of the 
autocorrelation function is the spectral power density.
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Noise sources II

Power spectral density 
and RMS

Noise and linear filter

White noise

S(f) = constant

R ~ Dirac function

vRMS= R0=∫f =0

∞
S  f df

H(s)

vS(f)
v' 

S '  f =∣H  j 2 f ∣2 S  f 

S'(f)

Noise sources are described by their autocorrelation 
function, or, equivalently, by their power spectral 
density, which will turn out to be quite useful in 
circuits.
There is a simple relationship between the rms value 
of the noise, and the power spectral density: the rms 
value is the square root of the integral of the PSD.
When a noise signal passes through a linear filter 
with transfer function H(s), the PSD at the output is 
related to the PSD of the signal at the input.  This is 
the fundamental property that will allow us to 
« calculate networks with noise sources »
White noise is an idealized noise source with flat 
power spectral density (inifinite power). Several 
physical processes can be approximated with white 
noise.
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Physical noise sources

Thermal (Johnson or 
Nyquist) noise in 
resistors (white noise)

Shot noise in PN 
barriers (white noise)

Flicker noise, 1/f noise, 
pink noise

R

R

S(f) = 4 k T R

R

v

i

S(f) = 4 k T / R

I

i

S(f) = 2 q I

Thermodynamics determines that a resistor must be 
associated with a noise source: thermal, Johnson or 
Nyquist noise.  There are two possible 
« implementations »: one in a Thevenin equivalent, 
the other in a Norton equivalent.  As the spectral 
power density is not dependent on frequency, this is 
white noise.  This noise is also present in the channel 
of a field effect transistor.
Shot noise is noise due to electrical current 
represented as an uncorrelated Poisson stream of 
discrete charges (q).  This occurs when a  current 
crosses a PN junction for instance.  It is also white 
noise.
Flicker noise is pink noise: the spectral density goes 
(more or less) as 1/f.  It is technology related, and 
finds its origin in chaotic phenomena.  It occurs for 
instance in MOSFETs or in carbon resistors.
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Networks with noise sources.

v1

v2

i3

v-out

i-in

V out s=H 1sV 1 s...
H 2 sV 2 sZ 3 s I 3sZ  s I i  s

S out  f =∣H 1 j 2 f ∣2S1 f ∣H 2 j 2 f ∣2S 2 f ∣Z 3 j 2 f ∣2S3 f 

S equi  f =
S out  f 

∣Z  j 2 f ∣2

A general linear network containing several 
independent noise sources and one input and one 
output can be treated as follows:
- find the transfer function from each individual source 
to the output (using the superposition principle)
- the spectral density of the output noise is given by 
the sum of the spectral densities of the different 
sources, weighted with the transfer functions, 
absolute squared.
- one can reduce the output noise to an equivalent 
input noise source (which has the same effect as all 
the noise sources together).
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Example 1

C

Rv
V out s=

R

R 1
sC

V i=
RC s

1RC s
V i

∣H  j 2 f ∣2=∣ j 2 f RC
1 j 2 f RC

∣
2

= 42 f 2 R2C2

142 f 2 R2C 2

S '  f = 42 f 2 R2C2

142 f 2 R2C2 S  f 

V-out

Log ff ~ 1/(2 pi R C)

We start with a very simple example.  A voltage noise 
source with power spectral density S(f) is AC coupled 
to a resistor R through a capacitor C.
We calculate the output voltage as a function of the 
noise source as if it were a normal voltage source.
From that, we deduce the transfer function H(s).
We calculate the transfer function absolute squared.

This gives us the factor by which we have to weight 
the power spectral density of the source to find the 
power spectral density at the output.



  

 

  13

Example 2 (exercise)

C

Ri

V-out

V out s=R I  s

S'(f) = ?
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Equivalent noise of amplifier

i_n

v_n

Z

It can be shown that the full effect of the noise 
sources in an amplifier can be represented by a 
combination of a voltage noise source and a current 
noise source (we make the approximation that they 
are uncorrelated here).
This takes into account the effect of the input load 
(the Thevenin or Norton equivalent impedance of the 
source as seen from the input of the amplifier).
In the case the amplifier is driven from a pure current 
source, only the current noise source matters, and in 
the case of a pure voltage source, only the voltage 
source matters.
The reason why we need TWO noise sources is that 
we need to accomodate the impedance of the source.
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Equivalent noise of amplifier II

Case of voltage 
amplifier (Thevenin)

Case of current 
amplifier (Norton)

i_n

v_n

Z

vequi s=vn sZ  sin s
S equi  f =S vn

 f ∣Z  j 2 f ∣2S i n
 f 

i_n

v_n

Zv-equi

i-equi

iequi s=in s
vn s
Z  s

S equi  f =S in
 f 

S vn
 f 

∣Z  j 2 f ∣2

We calculate the « output signal » v-equi from the 
network, assuming the amplifier is perfect and hence 
an « open circuit » (infinite input impedance).  The 
current through Z comes from the current source, and 
hence the output voltage is the sum of the voltage 
source and the impedance times the current source.
We now analyse this in terms of the superposition 
principle, in order to find the contribution of each 
(independent) noise source individually, to find the 
total power spectral density.
We do the same for the « output signal » i-equi, this 
time assuming a short circuit for the amplifier (0 input 
impedance).
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Equivalent noise of amplifier III

i_n

v_n

Z

i-equi
S equi  f =S in

 f 
S vn

 f 

∣Z  j 2 f ∣2

Load is capacitive: Z= 1
sC

S equi  f =S in
 f 42 f 2S vn

 f 

Load is resistive: Z = R S equi  f =S in
 f 

S vn
 f 

R2

We apply the result of the previous slide in the case 
of the perfect current amplifier.
Note that in the case of a capacitive load, the noise 
power spectral density has a term that has a factor 
f^2 for the voltage noise source, while in the case of 
the resistive load, there is no explicit frequency 
dependence other than that of the noise sources 
themselves.

WARNING: we didn't take into account the intrinsic 
noise of the resistor here.
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Shaping

Shaping for charge: impulse response of 
overall circuit

long enough to « integrate » the charge

short enough to limit « dead time »

signal = maximum of pulse

best possible signal/noise ratio

vout t =∫=−∞

t
i h t−dt

h(t)

i(t)

V s=H  s I s noise

f

I(s)

I(s)

H(s)

t

Shaping for a charge amplifier is usually understood 
to have a circuit that gives an impulse response with 
a more or less bell-shaped form in the time domain.  
A good shaper, that allows a good charge 
measurement (as peak value of the output pulse) 
must be the compromise of several desires.  As the 
impulse response is also the « weighting function » in 
the past of the current signal (convolution), it must be 
long enough to integrate most of the charge.  As it is 
the width of the pulse, it must be short enough to 
have small dead time.  It also needs to « cut away » 
most of the noise in the frequency domain, outside of 
the part where the signal is present.
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Shaping and scaling
A « unit charge » will generate an impulse 

response of which the height is the « gain » of 
the amplifier chain.

Scaling the time axis (k times faster), but keeping 
the gain (maximum value):

ht h ' t =h k t 

H s=∫0

∞
ht e−s t dt

H sH ' s= 1
∣k∣

H  s
k


t

A charge amplifier produces, per event, an output 
pulse which ressembles more or less its impulse 
response. We consider the « charge value » as given 
by the peak value of that pulse.  So what matters, for 
a charge amplifier, is the ratio of that peak value over 
the actual charge.
The gain is then that peak voltage per unit of charge 
(say, pico Coulomb).
If we « make the amplifier k times faster » while 
keeping the shape of the impulse response, and we 
want to keep the « gain » constant (the ratio of peak 
output voltage over the charge), then we have to 
scale the impulse response as shown.
The transfer function is the Laplace transform of the 
impulse response, and its scaling behaviour is well-
known.
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Application: scaling of S/N  1 

H(s)

i_n

i_sig

The signal has always the same intensity (fixed gain)
we need to look at the change of the noise as a function of 
time scale.
Noise = RMS value of noise (to be compared with peak signal)

N 1=∫f =0

∞
∣H  j 2 f ∣2 S  f df

N 2=
1
k ∫ f =0

∞
∣H  j 2 f

k
∣

2

S  f df

= 1

 k ∫u=0

∞
∣H  j 2u∣2S k udu

f/k = u

Assuming a given input signal (a short current pulse 
corresponding to a fixed charge), and assuming a 
fixed charge gain (maximum of the impulse 
response), the output signal level is constant (the 
height of the output pulse is constant).  The signal-to-
noise ratio is then determined by the RMS value of 
the noise.
Assuming an equivalent overall input noise current 
source with spectral power density S(f), we can 
calculate the RMS noise level at the output.
Applying the time scaling (k times faster), we find a 
new noise level.  In order to go further, we need a 
specific f-dependence of the noise source spectral 
density and/or of the shaper.
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Scaling of S/N 2

Let us assume a very 
simple filter: perfect 
lowpass filter (with 
sinc response):

f < f0  then |H(f)| = A

f > f0 then H(f) = 0

N 1=∫f =0

∞
∣H  j 2 f ∣2 S  f df

N 1=∫f =0

f 0

A2S  f df

N 2=
1

 k ∫u=0

∞
∣H  j 2u∣2 S k udu

N 2=
1

 k ∫u=0

f 0

A2S k udu

f
f0

A

In order to get a clearer feeling of what is going on, 
we are going to use a very simple (although not 
totally realistic) transfer function: the « perfect low-
pass filter » which lets through all frequencies equally 
and without phase shift below f0, and cuts them 
perfectly away beyond f0.
The impulse response of such a filter is a sinc 
function (sin(x)/x), and is not a very nice « pulse » 
because there are wobbles and so on.  We take this 
filter because it will illustrate the essential behavior of 
the noise, and will make the calculations very easy.
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Scaling of S/N 3

Case of resistive load

assume white equivalent 
noise sources

S equi  f =S in
 f 

S vn
 f 

R2 =S n

N 1=∫f =0

f 0

A2S  f df

N 1= f 0 A
2S n

N 2=
1

 k  f 0 A
2S n=

N 1

 k

N 2=
1

 k ∫u=0

f 0

A2S k udu

A k times FASTER amplifier has sqrt(k) times LESS noise ; 
the signal-to-noise ratio IMPROVES for faster amplifiers!

Let us see what happens in this simple case when we 
have a purely resistive load, and where we assume 
that the equivalent current and voltage noise sources 
of the amplifier are white (as is most often the case).  
The total equivalent input noise is then also white as 
we have seen.
If we do the simple calculation, and compare the 
RMS noise of an amplifier with the RMS noise of the 
k times faster amplifier, we find (maybe to our 
surprise...) that the FASTER amplifier has a LOWER 
noise level (and hence a better S/N ratio)!
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Scaling of S/N 4
Capacitive load

Assume only voltage noise,

assume it to be white

current noise will behave as in 
the « resistive case »

N 1=∫f =0

f 0

A2S  f df

N 2=
1

 k ∫u=0

f 0

A2S k udu

S equi  f =S in
 f 42 f 2S vn

 f 

S equi  f =42 f 2 S vn

N 1=∫f =0

f 0

A2 42 f 2S vn
df =2 A S vn

f 0
3

3

N 2=
1

 k ∫u=0

f 0

A2 42 k 2u2S vn
du= k ∫u=0

f 0

A2 42u2S vn
du= k N 1

This time, a k times FASTER amplifier has sqrt(k) times MORE noise ;
a faster amplifier DETERIORATES the S/N ratio.

If we do the same exercise with a purely capacitive 
load (which is very often the case in particle 
detectors), and we assume again that the equivalent 
noise sources of the amplifier are white, then we 
have seen that there are two contributions to the 
equivalent input noise: a part that is « white » (and 
will behave as in the previous resistive case), which 
comes from the equivalent current noise, and a part 
that is « blue » and comes from the equivalent 
voltage noise.  We limit ourselves to this last, « blue » 
noise.
A simple calculation then shows that this time, the 
faster amplifier has MORE rms noise, and hence a 
worse S/N ratio – as is in fact usually expected.
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Scaling of S/N 5

Current noise at the input: a faster amplifier 
IMPROVES S/N

Voltage noise with resistive load: a faster 
amplifier IMPROVES S/N

Voltage noise with capacitive load: a faster 
amplifier DETERIORATES S/N

Mixed case: it depends on the relative 
contributions: there will be an optimum amplifier 
speed.

We have as such demonstrated some general 
properties which are good to summarize.  Certain 
kinds of noise are suppressed with a faster amplifier 
(this can seem surprising!), and other kinds of noise 
become worse with a faster amplifier. 
In the case both contributions are present, there will 
be an optimal « amplifier speed » for the best S/N 
ratio.
This compromise will depend strongly on the 
equivalent voltage noise and current noise sources of 
the amplifier.
Let us stress that all this is with amplifiers which have 
the same shape of impulse response.  Changing the 
shape can improve also on the S/N ratio.  In general, 
Gaussian-like shaping tends to give good results.
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Resistive charge division: principle

R1 R2

i

x1 x2

L

A B
i1 i2

x1 ~ R1

x2 ~ R2

x1 + x2 = L

R1 + R2 = R

i1=
R2

R1R2

i

i2=
R1

R1R2

i
A ~ i1

B ~ i2 x2−x1

L
= A−B

AB

In resistive charge division, a resistive electrode of 
length L receives an injection of charge somewhere 
along its length due to a detection event.  We assume 
that this injection happens at a distance x1 from the 
left end and at a distance x2 from the right end.
In the ideal case, as the amplifiers are perfect current 
amplifiers with 0 impedance, the injected current i will 
divide in i1 and i2 respectively.  The amplifiers will 
amplify (and integrate) these respective currents.  
Their output will be proportional to the fraction of the 
current received.
Everything together gives us the relative position as a 
function of the ratio of the output signals.
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Charge division: noise.

R1 R2

i

A B
i1 i2

in1 in2

vn1 vn2

+ +

i1=in1
v n2−vn1

R1R2

i nR
R2

R1R2

i

inR

i2=i n2−
v n2−vn1

R1R2

−i nR
R1

R1R2

i

i1−i2=i n1−in22
vn2−v n1

R1R2

2 inR
R2−R1

R1R2

i i1i2=i n1in2i

Smin=S iS i
4

R2 S vS v4 S R=2 S i
8S v

R2 16k T
R

S plus=2 S i

We introduce all the noise sources in our setup: for 
each amplifier we have an equivalent current and 
voltage noise source, and the resistor itself has its 
Johnson noise (Norton equivalent).
Next we calculate the outputs i1 and i2 as a function 
of all these sources and the signal source.

But we will actually use the difference and the sum 
signals  (A-B over A+B) and we can imagine 
constructing the signal i1-i2 and the signal i1+i2 
which we consider now to be the « output signals ».  
We calculate those as a function of all the noise 
sources.  Using the absolute square of the transfer 
functions, we can now calculate the noise power 
spectral density on the signals i1-i2 and i1+i2.
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Charge division: resolution

p=D
S dp= dD

S
−D

S
dS
S
= 1

S
dD− p dS 

rms p=
1
S rms D2 p2rms S 

2

rms D=∫ f =0

∞
∣H∣2Smindf rms S=∫f =0

∞
∣H∣2 S plus df

Relative position
from -1 to 1.

x= p
2
L Physical position

rms x=
L

2 S rms D 2 p2rms S 
2

Position resolution (1 sigma)

The difference and the sum of the outputs of the 
amplifiers can also be considered as the amplified 
outputs of the difference and the sum of the currents. 
H(i1) + H(i2) = H(i1+i2) for instance.
 This means that the rms noise on the difference 
signal and the rms noise on the sum signal is given 
by the formula as if they passed through the amplifier.

The error propagation in the ratio: as the RMS noises 
are statistically independent on D and on S, we can 
combine them quadratically, to obtain the rms noise 
on p.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

