Higgs Pseudo-Observables

&

Second Riemann Sheet

Giampiero PASSARINO

Dipartimento di Fisica Teorica, Università di Torino, Italy
INFN, Sezione di Torino, Italy
HEPTOOLS Network

SM and BSM physics at the LHC

Based on work done in collaboration with Christian Sturm and Sandro Uccirati

(1, 2,

From the analytical structure of NLO - NNLO

what else, but the inevitable!

to Higgs pseudo - observables,

what else, but the inevitable

(1, <mark>2</mark>,)

From the analytical structure of NLO - NNLO

2 to Higgs pseudo - observables,

what else, but the inevitable!

Motivations

experiments

extract so-called **realistic observables** from raw data, e.g. $\sigma(pp \to \gamma\gamma + X)$ and need to present results in a form that can be useful for comparing with theoretical predictions, i.e. the results should be transformed into **pseudo-observables**;

theorists

compute pseudo-observables using the best available technology and satisfying a list of demands from the **self-consistency** of the underlying theory.

Setup

The Higgs boson

as well as the W or Z bosons, are unstable particles; as such they should be removed from in/out bases in the Hilbert space

$$S_{fi} = V_i(s) \Delta_H(s) V_f(s) + B_{if}(s),$$

where V_i is the **production vertex** $i \to H$ (e.g. $gg \to H$), V_f is the **decay vertex** $H \to f$ (e.g. $H \to \gamma \gamma$), Δ_H is the **Dyson re-summed Higgs propagator** and B_{if} is the **non - resonant background** (e.g. $gg \to \gamma \gamma$ boxes).

Complex pole

Example

$$S_{fi} = \left[Z_H^{-1/2}(s) \ V_i(s)\right] \frac{1}{s-s_{\mu}} \left[Z_H^{-1/2}(s) \ V_f(s)\right] + B_{if}(s).$$

$S \rightarrow PO$

From the *S*-matrix element for a physical process $i \rightarrow f$ we extract the relevant pseudo - observable,

$$S(H_C \to f) = Z_H^{-1/2}(s_H) V_f(s_H),$$

PO

which is gauge parameter independent – by construction – and satisfies the relation

$$S_{fi} = \frac{S(i \rightarrow H_c) S(H_c \rightarrow f)}{S - S_H} + \text{non resonant terms.}$$

The partial decay width is further defined as

$$\Gamma(H_c \to f) = \int d\Phi_f \sum_{\text{spins}} |S(H_c \to f)|^2,$$

where the integration is over the phase space spanned by |f>, with the constraint $P_H = \sum p_f$.

Schemes

Schemes

- RMRP scheme, the usual on-shell scheme; all masses and all Mandelstam invariants are real;
- CMRP scheme, the complex mass scheme with complex internal W and Z poles but with a real, external, on-shell Higgs with standard LSZ wave-function renormalization;
- CMCP scheme, the (complete) complex mass scheme with complex, external, Higgs where the LSZ procedure is carried out at the Higgs complex pole (on the second Riemann sheet).

