Electroweak Symmetry Breaking from a Strongly Coupled Fourth Generation

Gustavo Burdman

FermiLab and University of São Paulo

Based on arXiv:0710.0623, arXiv:0812.0368, +... with Oscar Eboli, Leandro Da Rold, Ricardo Matheus, Eduardo Lascio and Carlos Haluch

Outline

- 1 Motivation: EWSB from Fermion Condensation
- 2 Fourth Generation Condensation in AdS₅
- 3 Phenomenology at the LHC
 - The Quark Sector
 - The Lepton Sector
- Summary/Outlook

The Origin of Electroweak Symmetry Breaking

Dynamical EWSB:

Technicolor: Asymptotically free, unbroken gauge interaction

$$\Rightarrow \langle \bar{F}_L F_R \rangle \neq 0 \qquad \Rightarrow \text{EWSB}$$

F's are confined fermions, just as quarks in QCD.

- Alternative: gauge interaction spontaneously broken at $\Lambda \sim 1 \text{ TeV}$
 - \Rightarrow F's un-confined heavy fermions with EW quantum #'s

First attempt: Top Condensation - Topcolor

Top Condensation: Nambu '89, Bardeen-Hill-Lindner '90

New interaction at scale Λ

- Strongly coupled to 3rd generation
- Leads to top condensation:

$$\langle \bar{t}t\rangle \neq 0$$

Breaks EW symmetry, gives dynamical mass to top

Top Condensation Problems

But,

$$v^2 \simeq \frac{N_c}{8\pi^2} m_t^2 \left(\log \frac{\Lambda^2}{m_t^2} + k\right)$$

So to get $m_t \sim 170$ GeV need $\Lambda \sim 10^{15}$ GeV !!

Alternatively, if we want to avoid fine-tuning

$$\Lambda \sim 1 \text{ TeV} \Rightarrow m_t \simeq (600 - 800) \text{ GeV}$$

Possible Fixes

- Topcolor-assisted Technicolor (Hill '95):
- Top See-saw (Dobrescu, Hill '97):
- Assume a Chiral Fourth Generation
 - Couples strongly to new interaction
 - 4G condensation \Rightarrow EWSB, $m_4 \sim 600$ GeV

EWSB from Fourth Generation Condensation

Ingredients:

- A Chiral Fourth Generation: Q₄, U_{4R}, D_{4R}, L₄, E_{4R}, N_{4R}
- New strong interaction at the O(1) TeV scale:
 - ullet E.g. Broken gauge symmetry $M\sim TeV$
 - Strongly coupled to 4th gen. $\Rightarrow \langle \bar{F}_4 F_4 \rangle \neq 0$
- Fermion masses: higher dimensional operators like

$$\frac{x_{ij}}{\Lambda^2} \bar{f}_L^i f_R^j \bar{U}_R U_L$$

Fourth Generation Condensation and AdS₅

Models of 4G Condensation in Compact Extra Dimensions (G.B., Da Rold '07)

Extra dimensional theories in compact AdS_5 dual to strongly coupled theories in 4D:

- Naturally results in strongly coupled heavy fermions
- Higher-dimensional operators among light fermions suppressed by large UV scale Λ
- Build gauge theory in AdS_5 with one extra chiral generation and no Higgs as *only new elements* .

Solving the Hierarchy Problem in AdS₅

Metric in extra dimension \Rightarrow small energy scale from M_P (Randall, Sundrum '99)

$$ds^2 = e^{-2\kappa|y|} \, \eta^{\mu\nu} dx_\mu dx_\nu - dy^2$$

4th Generation close to TeV brane

 \Rightarrow Composite Higgs IR-localized

Bulk AdS₅ Model

- Bulk gauge theory: $SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_X$
- Four generations of SM fermions:
 - UV-localized light SM fermions
 - Q^3 , $t_R \sim \text{IR-localized}$
 - IR-localized 4th Generation

Flavor Violation in AdS₅ Models

KK Gauge Bosons couple stronger to heavier fermions

 \Rightarrow Tree-level flavor violation is hierarchical: Only important with the heavier generations

Fermion Condensation in AdS₅

Fourth-Generation Condensation in AdS₅:

- \bullet Fourth Generation in the AdS₅ bulk
- Choose zero-mode fermions IR localized ⇒ strongly coupled to KK gauge bosons

- ullet \Rightarrow 4G zero-mode quarks couple strongly to KK gluon
- We can arrange for at least one 4G to be super-critically coupled. E.g.:

$$\longrightarrow \langle \bar{\textit{U}}_4 \textit{U}_4 \rangle \neq 0$$

EWSB from Fourth-Generation in AdS₅

If
$$g_U>g_U^{ ext{crit.}}$$
 , $\Rightarrow \langle ar{U}_L U_R
angle
eq 0$

 \Rightarrow Solution to the gap equation:

This implies

- Electroweak Symmetry Breaking
- Dynamical $m_U^{(0)} \simeq 600 \text{ GeV}$
- ullet A heavy Higgs: \gtrsim 700 GeV

Fermion Masses

• Bulk 4-fermion ops. suppressed by M_P :

$$\int dy \sqrt{g} \frac{C^{ijk\ell}}{M_P^3} \bar{\Psi}_L^i(x,y) \Psi_R^j(x,y) \bar{\Psi}_R^k(x,y) \Psi_L^\ell(x,y) ,$$

Zero-mode fermion masses from zero-mode four-fermion operators

$$C^{ij44} N^{ij44} \frac{e^{k\pi R(4-c_L^i+c_R^j+c_R^4-c_L^4)}}{4-c_L^i+c_R^j+c_R^4-c_L^4} \frac{k}{M_P^3} \bar{f}_L^i f_R^j \bar{U}_R U_L$$

• When $\langle \bar{U}_4 U_4 \rangle \neq 0$ this results in m_{ij}

Flavor Hierarchy

O(1) flavor breaking in bulk can generate fermion mass hierarchy:

TeV localization \rightarrow larger m_{ij} Planck localization \rightarrow suppressed m_{ij}

Constraints

- Tree-level $S: \Rightarrow M_{KK} \gtrsim (2.5) \text{ TeV}$
- Tree-level FCNCs: can be circumvented with some tweaking.
- Loop-induced S: OK as long as some T > 0 induced (Kribs, Plehn, Spannowsky, Tait '07)
- Heavy Higgs: EW precision bounds $\Rightarrow m_h \simeq 750 \text{ GeV}$ $\boxed{0.95 \% \text{ C.L.}}$ (KPST)
- Also, in bulk AdS₅ theories, bounds on m_h are affected by divergences (G.B. Da Rold '08):

Phenomenology at the LHC

Phenomenology at the LHC

Heavy Quark Production at the LHC

Production of U₄ and D₄ at the LHC: (G.B., Da Rold, Eboli, Matheus '09)

Consider $m_{U_4} > m_{D_4}$:

$$pp \rightarrow D_4 \bar{D}_4 \rightarrow t\bar{t}W^+W^- \Rightarrow 4W$$
's final state

Two sources:

- SM QCD Production: Same for any theory with a 4th generation
- Production via s-channel KK Gluons (assume M_{KK} = 2.5 TeV)

Use $pp \rightarrow \ell^{\pm}\ell^{\pm}6j$ / E_T to beat backgrounds

Cuts in the same-sign dilepton analysis:

$$\rho_T^{j_{1,2}} > 100 \text{ GeV}; \qquad \qquad \rho_T^{\ell_{1,2}} > 50 \text{ GeV};$$

m_{D_4}	$\sigma_{\mathcal{S}}[\mathrm{fb}]$	$\sigma_{\mathcal{B}}[\mathrm{fb}]$	\mathcal{S}/\mathcal{B}	$\mathcal{L}_{\textit{min}}[pb^{-1}]$
300 GeV	87.0	6.2	14.	44
450 GeV	54.2	6.2	8.7	84
600 GeV	17.8	6.2	2.9	460

But this is for 14 TeV. What about 7 or 10 TeV?

Heavy Quark Production at the LHC

Incremental Goals

- ID D_4 signal over background takes O(1) fb^{-1} in same-sign dilepton channel
- Observing U_4 and mass reconstruction: O(10)'s fb^{-1}
- Separating the KK Gluon contribution from QCD:
 Signal of presence of new strong interaction

Heavy Quark Production at the LHC

Detecting the New Strong Interaction

The KK Gluon so strongly coupled to 4th generation quarks that

 $\Gamma_G \simeq M_G$

⇒ KK Gluon too broad to be observed at LHC

Can't see it in Q_4 pair-production: featureless $\sim 10\%$ excess

Observing the New Strong Interaction

Other possible ways

• Flavor violation of KK Gluon interactions (G.B., Lascio, in progress):

$$G^{(1)}
ightarrow U_4 \ ar{t} \ ext{or} \ G^{(1)}
ightarrow D_4 \ ar{b}$$

- ⇒ Single production of fourth-generation quarks
- Observing the strong interactions of the 4G lepton sector (G.B., Da Rold, Eboli, Matheus, in progress)

The Fourth-Generation Lepton Sector

$$L_4 = \begin{pmatrix} N_4 \\ E_4 \end{pmatrix}_I$$
, E_{4R} , N_{4R} Acquire masses $O(m_{U_4})$

The Fourth-Generation Lepton Sector

Neutrino Masses and Mixings

- See-saw:
 - UV-localized Majorana mass term \Rightarrow usual see-saw for light neutrinos.
 - See-saw not affecting IR-localized N_4 , remain heavy.
- To obtain correct pattern in V_{MNS} results in L_4 coupling \simeq equally to the 3 lighter generations
- $\mu \to e\gamma$: $V_{4i} < O(0.01)$

The Fourth-Generation Lepton Sector at the LHC

Heavy Lepton pair-production at the LHC

(G.B., Da Rold, Eboli, Haluch, Matheus in progress)

Assuming $m_{E_4} > m_{N_4}$: $N_4 \to \ell^- W^+$, with $\ell = e, \mu, \tau$ For instance using

$$pp \rightarrow N_4 \bar{N}_4 \rightarrow e^{\pm} \mu^{\mp} W^+ W^-$$

backgrounds should be manageable

Seeing the Strong Interaction

- Electroweak KK Gauge bosons are narrower than KK gluon
- They represent more than 1/3 of the cross section
- $\sigma(pp \to N_4 \bar{N}_4 \to e^{\pm} \mu^{\mp} W^+ W^-) \simeq O(\text{few}) \text{ fb}$

Summary/Outlook

- Existence of 4th Generation would suggest special role in EWSB
- Possible to build viable models of 4th Generation condensation leading to EWSB and Fermion masses in AdS₅
- Identification of new strong interaction with 4G quarks hard at the LHC.
- Alternatively, use electroweak resonances (narrower than color-octet) in the production of 4G leptons
- Or flavor-violating single production of U_4 , or D_4 .