

PDF sensitivities using W,Z,γ* at LHCb

Ronan McNulty, Francesco deLorenzi
University College Dublin

PDF4LHC 6th August 2009

Pseudo-data fits to deduce improvements in PDFs

- From eigenvector phase space (assume multinomial distribution), choose one set: <u>'truth'</u>
- Generate many pseudo-data sets corresponding to given luminosity
- Fit each pseudo-data set: 'pseudo-measurement'
- Compare <u>pseudo-measurement</u> to <u>truth</u>
 - centre of distribution gives bias
 - width of distribution gives precision
- Repeat

What is fit? (MSTW,CTEQ,Alekhin)

We considered $\frac{d\sigma}{dv}$ for W+,W-,Z.

(Luminosity)

$$f_0 = \frac{d\sigma}{dy} : \text{ distribution obtained with central eigenvectors}$$

$$f_i = \frac{d\sigma}{dy}(\lambda_i = 1, \lambda_{\neq i} = 0)$$
: distribution with ith e.v. moved 1σ

Fit
$$\chi^{2}(\lambda_{0}, \lambda_{i}) = \sum_{j=1}^{\#bins} \left[\frac{x_{j} - \lambda_{0}(f_{0} + \lambda_{i}(f_{i} - f_{0}))}{\sigma_{j}} \right]^{2} + \sum_{i=1}^{\#e.v.} \lambda_{i}^{2}$$
Normalisation Eigenvalues

data in j bins, each with uncertainty $\boldsymbol{\sigma}$

Results for precision on luminosity shown at DIS09....

	0.1 fb ⁻¹			
	MSTWos	CTEQ66	Alekhin	NNPDF
W+	1.8	2.4	2.0	2.9
W-	1.9	2.6	2.2	2.7
Z	1.9	2.4	2.2	2.4
WWZ	1.7	2.3	1.8	2.0
	1 fb ⁻¹			
	MSTWos	CTEQ66	Alekhin	NNPDF
W+	1.6	2.2	1.8	2.4
W-	1.6	2.3	2.1	2.4
Z	1.7	2.1	1.9	1.8
WWZ	1.3	2.1	1.4	2.2
	10 fb ⁻¹			
	MSTWos	CTEQ66	Alekhin	NNPDF
W+	1.3	2.0	1.5	2.5
W-	1.2	1.9	1.6	3.0
Z	1.4	1.9	1.9	1.9
WWZ	0.8	1.7	1.0	-

Percentage statistical uncertainty on fitted luminosity

Precision doesn't scale with

 $\frac{1}{\sqrt{N_{events}}}$

Covariance matrix

$$\chi^{2}(\lambda_{0}, \lambda_{i}) = \sum_{j=1}^{\#bins} \left[\frac{x_{j} - \lambda_{0}(f_{0} + \lambda_{i}(f_{i} - f_{0}))}{\sigma_{j}} \right]^{2} + \sum_{i=1}^{\#e.v.} \lambda_{i}^{2}$$

Before:
$$V_{ij} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Before:
$$V_{ij} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \text{After:} \qquad V_{ij} = \begin{pmatrix} <1 & \neq 0 & \neq 0 & \neq 0 \\ \neq 0 & <1 & \neq 0 & \neq 0 \\ \neq 0 & \neq 0 & <1 & \neq 0 \\ \neq 0 & \neq 0 & \neq 0 & <1 \end{pmatrix}$$

For any quantity
$$f(\lambda_i)$$

$$\delta_f = \sum_{ij} \frac{\partial f}{\partial \lambda_i} V_{ij}^{-1} \frac{\partial f}{\partial \lambda_j}$$

so modified PDFs can be deduced.

MSTW08 PDF

% uncertainty for MSTW08 Q²=100 GeV²

Absolute uncertainty for MSTW08 Q²=100 GeV²

Effect on absolute uncertainty for MSTW08 at Q²=100 GeV² using **0.1fb-1** of LHCb data

Effect on absolute uncertainty for MSTW08 at Q²=100 GeV² using **1fb-1** of LHCb data

Effect on absolute uncertainty for MSTW08 at Q²=100 GeV² using **10fb-1** of LHCb data

Ratio of uncertainty after fit to before for MSTW08 at Q²=100 GeV² using **0.1 fb-1** of LHCb data

Ratio of uncertainty after fit to before for MSTW08 at Q²=100 GeV² using **1 fb-1** of LHCb data

Ratio of uncertainty after fit to before for MSTW08 at Q²=100 GeV² using **10 fb-1** of LHCb data

Ratio of uncertainty after fit to before for MSTW08 at Q²=100 GeV² using **10 fb-1** of LHCb data

First look at effect on other PDF sets

Effect on gluon PDF with fit to 1fb⁻¹ of LHCb data at Q²=100 GeV²

Uncertainties before fit are different for each model

Effect of adding W and Z data is similar

x=1E-4: uncertainty after fit = 2/3 uncertainty before fit

Effect on gluon PDF with fit to 10fb⁻¹ of LHCb data at Q²=100 GeV²

Uncertainties before fit are different for each model Effect of adding W and Z data is similar

x=1E-4: uncertainty after fit ~ 40% uncertainty before fit

10fb-1 of LHCb W&Z data => > halve uncertainty on gluon pdf

Future work

- Further cross-check with physics expectations.
- Extend fits to other PDF sets
- Fit to differential distribution for γ^* : $\frac{d^2\sigma}{dQ^2dy}$ (preliminary results show major improvements)